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The equation of state (EOS) of asymmetric nuclear matter at zero and finite temperatures is con-
structed with the variational method, starting from the realistic nuclear Hamiltonian composed of
the AV18 and UIX nuclear potentials. At zero temperature, the energy per nucleon of asymmet-
ric nuclear matter is calculated in the two-body-cluster approximation with the three-body-force
contribution treated somewhat phenomenologically so as to reproduce the empirical saturation
conditions. At finite temperatures, the free energies per nucleon of asymmetric nuclear matter
are obtained with an extension of the variational method by Schmidt and Pandharipande. Valid-
ity of the frozen-correlation approximation employed in this study is confirmed. The obtained
free energies and related thermodynamic quantities for various densities, temperatures and pro-
ton fractions are essential ingredients in our project for constructing a new nuclear EOS table for
supernova simulations.
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1. INTRODUCTION

It is a challenging problem in astrophysics to elucidate the mechanism of core-collapse su-
pernova (SN) explosion. Although many efforts have been devoted to hydrodynamic numerical
simulations of SN, the mechanism is not clarified yet. In the numerical simulations of SN, the
equation of state (EOS) of hot, dense matter is an essential ingredient. Since the EOS for SN
simulations must cover an extremely wide range of densities, temperatures and proton fractions, at
present, only two types of nuclear EOSs are available for SN simulations: One is constructed by
Lattimer and Swesty [1], and another is by Shen et al [2]. Extensions of the Shen-EOS so as to take
into account hyperon mixing [3] and hadron-quark phase transition [4] are also available.

Since these EOSs are based on phenomenological models, we undertook to construct a new
nuclear EOS based on the realistic nuclear Hamiltonian with a variational method. In Refs. [5,
6], we constructed the nuclear EOS at zero and finite temperatures for uniform symmetric nuclear
matter and neutron matter. In this paper, we extend the study to arbitrarily asymmetric nuclear
matter.

2. VARIATIONAL CALCULATION AT ZERO TEMPERATURE

In this section, we construct the EOS of asymmetric nuclear matter at zero temperature. The
nuclear Hamiltonian is expressed as the sum of the two-body Hamiltonian H2 and the three-body
Hamiltonian H3. The two-body Hamiltonian H2 is defined as

H2 =−
N
∑

i=1

h̄2

2m
∇2

i +
N
∑

i< j
Vi j. (2.1)

Here, m is the nucleon mass and Vi j is the two-body potential, for which the AV18 potential is
chosen.

The expectation value of H2 is calculated with the Jastrow wave function

Ψ = Sym

[
∏
i< j

fi j

]
ΦF, (2.2)

where ΦF is the Fermi-gas wave function at zero temperature. The correlation function fi j in Eq.
(2.2) consists of spin-isospin-dependent central correlation functions f µ

Cts(ri j), tensor correlation
functions f µ

Tt(ri j) and spin-orbit correlation functions f µ
SOt(ri j). Here, s is the two-body total spin,

t is the two-body total isospin, and µ is the third component of t, respectively. It is noted that µ
distinguishes the three isospin-triplet pairs, i.e., p-p, p-n and n-n.

In this study, the expectation value of H2 is expressed in the two-body cluster approximation,
and minimized with respect to the correlation functions to obtain the two-body energy E2/N. In this
minimization, the following two constraints are imposed: One is the extended Mayer’s condition
expressed as

4πρ
∫ ∞

0

[
Fµ

ts (r)−Fµ
Fts(r)

]
r2dr = 0, (2.3)

where Fµ
ts (r) is the spin-isospin-dependent radial distribution function, and Fµ

Fts(r) is Fµ
ts (r) in the

case of the Fermi gas. This is a certain kind of the normalization condition.
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Figure 1: Energies per nucleon for various proton fractions x as functions of the density ρ . Energies obtained
with the FHNC calculation (APR) for symmetric nuclear matter and neutron matter are also shown.

The other is the healing-distance condition, which is expressed as

f µ
Cts(r) = 1, f µ

Tt(r) = 0, f µ
SOt(r) = 0. (r ≥ rh) (2.4)

Namely, the correlations vanish at any distance between two nucleons r larger than the healing-
distance rh. The healing distance rh is determined in Ref. [5] so that the obtained E2/N for
symmetric nuclear matter is close to the result with a more sophisticated variational method, i.e.,
the Fermi Hypernetted Chain (FHNC) calculations, by Akmal et al. (APR) [7].

The contribution from the three-body Hamiltonian H3, with use of the UIX three-body nuclear
potential, is expressed as

E3

N
(ρ,x) = α

ER
3

N
(ρ,x)+β

E2π
3
N

(ρ,x)+ γρ2e−δρ [
1− (1−2x)2] , (2.5)

where ρ is the number density and x is the proton fraction. In Eq. (2.5), ER
3 (ρ,x)/N and E2π

3 (ρ,x)/N
are the expectation values of the repulsive and two-π-exchange parts of the UIX potential in the case
of the Fermi gas, respectively; the last term is a phenomenological correction term. Then, the total
energy E/N is the sum of E2/N and E3/N, in which the parameters α,β ,γ and δ are determined
so that E/N reproduces the empirical saturation data, i.e., the saturation density ρ0 = 0.16fm−3,
the saturation energy E0/N = −16.1MeV, the incompressibility K = 240MeV and the symmetry
energy Esym/N = 30MeV [5, 6].

The obtained total energies per nucleon E/N are shown in Fig. 1: Also shown are the results
by APR [7]. It is seen that our results are in good agreement with those by APR, especially in the
neighborhood of the normal density. At higher densities, the results by APR become lower due
to the pion condensation [7]. It is noted that the FHNC calculations are difficult to perform for
asymmetric nuclear matter.

3. VARIATIONAL CALCULATION AT FINITE TEMPERATURE

In this section, we extend the variational method by Schmidt and Pandharipande (SP) [8] to
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calculate the free energy per nucleon F/N for asymmetric nuclear matter at finite temperatures [5].
In this method, F/N is expressed as

F
N

=
ET

N
−T

S
N

. (3.1)

The approximate internal energy ET/N is the sum of the two-body energy ET2/N and the three-
body energy ET3/N. The two-body energy ET2/N is the expectation value of H2 with the Jastrow
wave function at finite temperature Ψ(T ), expressed in the two-body cluster approximation. The
functional form of Ψ(T ) is Eq. (2.2), with ΦF replaced by the Fermi-gas wave function at finite
temperature, ΦF(T ), which is specified by the averaged occupation probabilities of protons np(k)
and of neutrons nn(k). Here, ni(k) (i = p, n) is assumed as

ni(k) =

{
1+ exp

[
εi(k)−µi

kBT

]}−1

, (3.2)

with the single particle energy εi(k) being parameterized by the effective mass m∗
i . In this study, the

so-called frozen-correlation approximation is employed, i.e., the correlation function fi j in Ψ(T )
is assumed to be the same as at zero temperature. The three-body energy ET3/N is also assumed
to be the same as E3/N at zero temperature. The approximate entropy S/N in Eq. (3.1) is also
expressed with ni(k) as

S
N

=−kB

N ∑
i=p,n

∑
spin

∑
k

{
[1−ni(k)] ln [1−ni(k)]+ni(k) lnni(k)

}
. (3.3)

Then, F/N is minimized with respect to m∗
p and m∗

n.
The obtained free energies of asymmetric nuclear matter at T = 30 MeV are shown in Fig.

2(a). Also shown are the results with the FHNC calculation by Mukherjee [9]. It is seen that the
present results are in good agreement with those by Mukherjee. Other thermodynamic quantities
such as entropy, pressure and chemical potential, derived from the free energy, are quite reasonable,
though not shown in this paper.

Figure 2(b) shows the comparison between F/N in the frozen-correlation approximation and
the fully minimized F/N. Here, the latter implies that the free energy is minimized with respect
to m∗

p, m∗
n and the correlation function fi j with two constrains, i.e., the extended Mayer’s condition

and the healing-distance condition. It is seen in this figure that the free energies in the frozen-
correlation approximation are in good agreement with those with the full minimization: the validity
of the frozen-correlation approximation is confirmed.

4. CONCLUDING REMARKS

In this paper, we constructed an EOS for uniform asymmetric nuclear matter at zero and fi-
nite temperatures with the variational method, starting from the realistic nuclear Hamiltonian. The
obtained free energy and other thermodynamic quantities such as entropy, pressure and chemical
potential are important ingredients in the EOS of SN matter. In order to complete a new nuclear
EOS table for SN simulations, it is necessary to treat non-uniform nuclear matter and the forma-
tion of nuclei at low densities, in addition to uniform nuclear matter. We plan to construct the
non-uniform nuclear EOS in the Thomas-Fermi approximation using the present uniform EOS by
following the procedure adopted by Shen et al [2].
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Figure 2: (a) Free energies per nucleon at T = 30 MeV for various proton fractions x as functions of the
density ρ . Free energies calculated with the FHNC method for symmetric nuclear matter and neutron matter
by Mukherjee are also shown. (b) Free energies per nucleon in the frozen-correlation approximation and
those with the full minimization as functions of the density ρ for symmetric nuclear matter .
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