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Recent observational studies of type Ia supernovae (SNeIa)suggest correlations between the

brightness of an event and properties of the host galaxy thatappear to involve the age of the

progenitor population. One way to influence the explosion systematically is through the central

density at ignition, which is determined by the mass of the white dwarf before the onset of ac-

cretion, the white dwarf cooling time (prior to the onset of accretion), the subsequent accretion

history, and neutrino losses. The dependence of the centraldensity on cooling time connects the

central density to the age of the progenitor and therefore the average stellar age of the host galaxy.

We find that with increased progenitor central density, production of Fe-group material does not

change but production of56Ni decreases, which we attribute to a higher rate of neutronization

occurring at higher density. These results offer an explanation for the observation of dimmer

SNeIa in galaxies with an older stellar population. We also demonstrate a strong dependence of

the56Ni yield in our results on the morphological structure of theburning front during the early

deflagration, suggesting that a statistical ensemble of simulations is necessary when studying the

systematics of SNeIa.
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1. Introduction

The most widely accepted setting for a type Ia supernova explosion is a thermonuclear runaway
occurring in a C/O white dwarf (WD) that has gained mass from astellar companion [1]. In this
“single degenerate” scenario, the WD gains mass, compressing and heating the core until a flame
is born that rapidly consumes the white dwarf. We explore thesystematics of these events with
models that assume this paradigm. Specifically, our models assume that the explosion begins with
a subsonic deflagration born in the interior of the WD that transitions to a supersonic detonation
wave that rapidly incinerates the star, the deflagration-to-detonation transition (DDT) paradigm [2].
We utilize a theoretical framework for statistical studies[3] using two-dimensional simulations with
a customized version of the Flash code developed at the University of Chicago [4, 5, 6, 7].

2. The Role of Central Density

After forming, the progenitor WD is isolated from any significant source of heat input and
cools. Once accretion begins, the WD core temperature increases. An initially cooler WD requires
a higher central density for accretion to heat the WD core to the temperature at which carbon
burning ignites [8] (See also [9]). SNeIa are observed in a surrounding stellar population, the age
of which is defined as the time since the last star-forming event. A SNIa from an older stellar
population may have undergone a longer period of isolation,leading to a higher central density.
Thus we study the effect of central density on56Ni yield as a proxy for a relation between age of
the stellar population and mean brightness of SNeIa.
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Figure 1: Plot of the56Ni-to-Fe-group mass ratio vs. duration of the deflagration (subsonic burning) phase,
with realizations grouped by central density of the progenitor. For a given progenitor, more time spent in
subsonic burning allows a greater degree of neutronization, thus lowering the yield of56Ni. Additionally,
despite occurring faster, SNeIa from progenitors with a higher central density undergo a higher degree of
neutronization so that the yield of56Ni decreases despite nearly constant production of Fe-group material.

Our progenitors are WD stars with convective, carbon-depleted cores and isothermal en-
velopes. We constructed five progenitors to study the effectof progenitor central density on56Ni
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yield, and therefore the brightness of the SNIa. We initiateburning with a "match head" of burned
material at the center of the star perturbed by spherical harmonics. Each perturbation spectrum
(“realization”) is generated by a seed number; we simulate 30 independent realizations for each
progenitor to generate a population of SNeIa at each density, giving an idea of the intrinsic statisti-
cal spread of SNeIa in addition to the variation due to progenitor central density.

3. Results

We find that as the central density of the progenitor increases the amount of radioactive56Ni
produced decreases; quantitatively, we find that an increase of 109 g cm−3 in central density lowers
the 56Ni yield by 0.047±0.003M⊙. This is the result of a higher rate of neutronization at higher
densities, which pushes the nucleosynthetic yields towards more neutron-rich, stable isotopes such
as58Ni. The radioactive56Ni powers the light curve of the SNIa, so a lower56Ni yield directly
implies a dimmer SNIa. Recalling our tentative identification of central density as a proxy for the
age of the stellar population, these two correlations show that SNeIa from older stellar populations
are predicted to appear dimmer. This is in agreement with recent observations [10, 11, 12, 13].
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Figure 2: Plot of 56Ni vs. progenitor central density for five realizations, illustrating the variety of trends
that can be seen within a realization. These include non-monotonic trends suggesting an increase of56Ni
with central density instead of the decrease seen in a statistical ensemble.

As we vary the central density of the progenitor within a realization, we find a considerable
scatter with most cases showing non-monotonic56Ni yield. Any observed trend in a single re-
alization could thus be deceiving. We believe the scatter tofollow from a high morphological
dependence, which varies the time spent in the deflagration stage and strongly impacts the trend in
56Ni. Because of this effect, any study of trends in SNeIa should consider the statistics of a suite of
simulations in order to capture the actual behavior of SNeIa.

Höflich et al. (2010) [14] argue that56Ni in the central regions of the exploding WD does not
contribute to the light curve at maximum, and therefore theydo not see a significant trend with cen-
tral density at maximum brightness, but in late-time brightness. The pure-deflagration models of
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Röpke et al. (2006) [15] exhibit a shallow increase of produced56Ni as central density increases, in
contradiction of our findings. Iwamoto et al. (1999) [16] findthat the trend with central density de-
pends on the DDT transition density; extrapolating from their results, our value of transition density
should yield an increasing56Ni yield as central density increases. Bravo et al. (1993, 1996) [17, 18]
find a similar effect of lowering56Ni fraction due to increasing electron capture. But since more
mass burns, they find that the peak brightness is not stronglydependent upon the central density, in
contrast to our results. Complete details of our study may befound in Krueger et al. (2010) [19].
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Figure 3: Plot of stretch vs. age. In blue are the results from Neill et al. (2009) [12]; the vertical grey lines
show where they binned and averaged their data. In red are theresults from this work converted to age [8]
and stretch [20]; error bars for our results show the standard error of the mean and the shaded region shows
the standard deviation. Our models systematically overproduce56Ni and the central density-age conversion
has large uncertainties; to account for this, our data is plotted on a shifted scale (shown on the right axis) in
order to compare the trends. Our results show a declining stretch with increasing age, as seen in observations,
but with a shallower slope, suggesting the central density effect contributes to this observational finding.
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