
P
o
S
(
N
I
C
 
X
I
)
2
5
9

Number-projected energy and heat capacity in the
thermodynamic nuclear system.

N. Benhamouda ∗
Laboratoire de Physique Théorique , Faculté de Physique, USTHB, BP32, El-Alia, 16111
Bab-Ezzouar, Algiers, Algeria
E-mail: benhamoudan@yahoo.fr

N.H. Allal
Laboratoire de Physique Théorique , Faculté de Physique, USTHB, BP32, El-Alia, 16111
Bab-Ezzouar, Algiers, Algeria,
and CRNA, 2,Bd Frantz Fanon BP399 Alger-Gare, Algiers, Algeria

M. Fellah
Laboratoire de Physique Théorique , Faculté de Physique, USTHB, BP32, El-Alia, 16111
Bab-Ezzouar, Algiers, Algeria,
and CRNA, 2,Bd Frantz Fanon BP399 Alger-Gare, Algiers, Algeria

M.R. Oudih
Laboratoire de Physique Théorique , Faculté de Physique, USTHB, BP32, El-Alia, 16111
Bab-Ezzouar, Algiers, Algeria,

In order to describe thermal paired systems, an approach that combines the modified BCS method

(MBCS) and the particle-number projection method (PNP) is proposed. The thermal energy and

the heat capacity are numerically studied as a function of the temperature in the case of162Dy.

11th Symposium on Nuclei in the Cosmos, NIC XI
July 19-23, 2010
Heidelberg, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:benhamoudan@yahoo.fr�


P
o
S
(
N
I
C
 
X
I
)
2
5
9

Number-projected energy and heat capacity N. Benhamouda

1. Introduction

Recently, thermodynamic properties of hot nuclear systems have been widely investigated. In-
deed, with the advent of nuclear radioactive beams, the study of these nuclei becomes an important
challenge for nuclear physics. Phase transitions are the subject of peculiar interest since they are
often connected to the spontaneous symmetry breaking, leading to violation of conservation laws.
The evaluation of statistical properties, such as the energy and the heat capacity, as a function of
the temperature, should provide information on the structure of hot nuclei.
It is well known that the symmetry violations (as the particle-number symmetry or the rotational
one) in the BCS theory may imply important effects (generally so-called quantal fluctuations) on
the calculation of various physical observables. At finite temperature T, statistical fluctuations are
added to the quantal ones. These fluctuations arise from another symmetry violation: the unitary
relation of the particle-density matrix [1]. Recently, the modified BCS method (MBCS) [1, 2]
was suggested to take into account this kind of fluctuations by considering the fluctuations of the
quasi-particle number which are neglected by the conventionnal finite temperature BCS approach
(FTBCS)[3, 4].
The purpose of the present work is to evaluate the energy and the heat capacity as a function of
the temperature for the nucleus162Dy in the framework of a microscopic model that includes the
pairing effects. Since the latter play a crucial role in the description of such nuclei, they have to be
taken into account rigorously. With this aim, an approach that combines the modified BCS method
(MBCS) and a particle-number projection method (of projection after variation (PBCS) type) [5]
is proposed. The paper is organized as follows. The formalism is presented in section 2. In section
3, the energy and heat capacity are numerically studied as a function of the temperature. Main
conclusions are summarized in the same section.

2. Formalism

The intrinsic motion of N=2P paired particles is described by the Hamiltonian:

Ĥ = ∑
ν>0

εν

(
a†

ν aν +a†
ν̃ aν̃

)
− G ∑

ν µ>0

a†
ν a†

ν̃ aµ̃ aµ , (2.1)

wherea†
ν andaν respectively represent the creation and an nihilation operators of the state| ν〉, of

energyεν ; anda†
ν̃ andaν̃ those of the state| ν̃〉, which is the time reverse of| ν〉 and has the same

energy. G is the pairing strength which is assumed to be constant.
Refs.[1, 2] have shown that the quasi-particle number fluctuations are not taken into account in
the FTBCS theory. The modified BCS (MBCS) approach allows one to overcome this defect, by
introducing a secondary Bogoliubov transformation:

ᾱ†
ν =

√
1−ηνα†

ν +
√

ηναν̃

ᾱν̃ =
√

1−ηναν̃ −
√

ηνα†
ν (2.2)

whereην = 1
1+exp(βEν ) , that connects between the usual quasi-particle (QP) operatorsα†

ν andαν

and the modified quasi-particle operators (MQP)ᾱ†
ν andᾱν . By combining the Bogliubov-Valatin
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transformation and (2.2), one obtains:

a†
ν = ūν ᾱ†

ν + v̄ν ᾱν̃

aν̃ = ūν ᾱν̃ − v̄ν ᾱ†
ν (2.3)

where the variational parametersūν andv̄ν read:

ūν =
√

1−ηνuν +
√

ηνvν

v̄ν =
√

1−ηνvν −
√

ηνuν (2.4)

The Hamiltonian in the MQP representation is analogous to that of the QP representation. One has
just to replace theα†

ν andαν operators bȳα†
ν andᾱν and theuν andvν coefficients byūν andv̄ν .

One then obtains, after some algebra, the gap equations:

∆̄ = G ∑
ν>0

ūν v̄ν = G ∑
ν>0

[uνvν(1−2ην)− (
1−2v2

ν
)

δην ] (2.5)

N = 2 ∑
ν>0

v̄2
ν = 2 ∑

ν>0

[
v2

ν +(1−2v2
ν)ην −2uνvνδην

]
(2.6)

whereδην =
√

ην(1−ην) is the QP fluctuation number.
The MBCS internal energy has then an expression similar to the BCS one:

EMBCS= 2 ∑
ν>0

(εν − G
2

v̄2
ν)v̄2

ν −
∆̄2

G
(2.7)

This approach allows one to establish the gap equations and the physical quantities in a simple
way. However, it neglects the fluctuations of the particle number. To overcome this defect, one
considers the particle-number projection method of PBCS type [5]. With this aim, one introduces
the particle-number projection operator, defined by:

P̂ =
1

2π

∫ 2π

0
dϕ eiϕ(N̂−2P) (2.8)

whereN̂ is the particle-number operator.
An approximate form of this operator may be obtained by a discretization of the integral based on
2(n+1) equally spaced points from 0 toπ. This leads to the expression:

P̂n =
1

2(n+1)

{
n+1

∑
k=0

ξk z−P
k ∏

ν

[
1+(

√
zk−1)a†

νaν
]
+cc

}
(2.9)

where

ξk =

{
1
2 if k = 0 or k = n+1
1 if 1≤ k≤ n

, zk = exp{ikπ/(n+1)} (2.10)

and the notationccmeans the complex conjugate with respect tozk.
In the MQP representation, it takes the following form:

P̂n =
1

2(n+1)

{
n+1

∑
k=0

ξk z−P
k ∏

ν>0

[
1+(

√
zk−1)

[
ᾱ†

ν ᾱν + ᾱ†
ν̃ ᾱν̃ −2ᾱ†

ν ᾱ†
ν̃ ᾱν̃ ᾱν

]
+

(zk−1)
[
ᾱ†

ν ᾱ†
ν̃ ᾱν̃ ᾱν + v̄2

ν(1− ᾱ†
ν ᾱν − ᾱ†

ν̃ ᾱν̃)+ ūν v̄ν(ᾱ†
ν ᾱ†

ν̃ + ᾱν̃ ᾱν)
]]

+cc
}

. (2.11)
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One obtains the formal expression of the number projected pairing energy at finite temperature T
as:

EPNP =
〈0T |ĤP̂n|0T〉
〈0T |P̂n|0T〉

= EMBCS+G ∑
ν>µ

ū3
ν v̄ν ūµ v̄3

µDνµ , (2.12)

where|0T > is the thermal vacuum,

Dνµ = 2(n+1)Cn

n+1

∑
k=0

ξk z−P
k (zk−1)2 ∏

j 6=νµ

(
ū2

j +zkv̄
2
j

)
+cc, (2.13)

and

C−1
n = 2(n+1)

{
n+1

∑
k=0

ξk z−P
k ∏

j>0

(
ū2

j +zkv̄
2
j

)
+cc

}
. (2.14)

It then appears that the particle-number projection induces the inclusion of a corrective term in the
energy expression. One notices that if one setszk = 1, the energy will thus reduce to the MBCS
approach.

3. Numerical results and discussion

The previously described method is applied to the evaluation of the energy and the heat ca-
pacity in the case of162Dy neutron-rich nucleus. The single-particle energies and eigen states of
the Woods-Saxon mean field explicitly dependent on the nuclear shape have been used. The equi-
librium deformations are those of Möller et al. [6]. The number of oscillation shells is NMax=12.
The pairing strength has been chosen such as to reproduce the even-odd mass differences [7].
In a first step, the energy versus the temperature has been studied, in both approaches: Modified
BCS (MBCS) and the particle number projection method (PNP) . The obtained results are reported
in figure1 for the proton and neutron systems. One notices, in each case :

1. At low temperature ( T<Tc, Tc being the critical temperature), the discrepancy between the
two predictions is constant and of the order of 1.5 MeV in the proton case, and of the order
of 1.3 MeV in the neutron case.

2. A monotonous increase is observed around the critical temperature for the neutron system,
while it is more abrupt in the proton case.

3. When T>Tc, both curves join, since there is no more pairing in this case.

It appears that the particle-number projection effect is important at low temperature i.e. when
T<Tc, and disappear at high temperature. N. Dinh Dang et al.[8] achieved to similar results by
including the particle number fluctuation in the framework of the Lipkin-Nogami method in the
static path approximation.
As a second step, we studied the heat capacity C which is defined as:C = dE

dT . Indeed, a clear sig-
nature of the phase transition is the discontinuity of the heat capacity C at the critical temperature
T=Tc. Variations of the heat of the capacity as a function of the temperature for proton and neutron
systems are given in figure1.
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Figure 1: Variation of the energy and the heat capacity as a function of temperature for proton and neutron
systems of the nucleus162Dy. The Modified BCS results are plotted as solid lines, while the particle-number
projection results are represented by dashed lines.

One notes an important discrepancy between the two approaches atT = Tc. The quantal fluctu-
ations are thus predominant whenT < Tc and decrease at high temperature. This fact has been
already pointed out within the framework of more sophisticated approaches like the finite tempera-
ture Hartree-Fock Bogoliubov (FTHFB) approach (see e.g. ref [9] and references therein). On the
other hand, one notices that the phase transition in the proton case is more pronounced than in the
neutron one.
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