

WE Heraeus Summer School on Nuclear Astrophysics in the Cosmos Gesellschaft für Schwerionenforschung and Universität Heidelberg, July 12–17, 2010

Stellar Evolution and Death Models and Modeling

Hans-Thomas Janka (Max-Planck-Institut für Astrophysik, Garching, Germany)

Contents

Lecture I :

- Supernovae: classification and phenomenology
- Basics of stellar evolution & death scenarios
- White dwarfs and thermonuclear supernovae

Lecture II :

- Gravitational (core-collapse) supernovae: evolution stages
- Neutron stars and their birth
- Black holes and gamma-ray bursts
- Observable signals: neutrinos, gravitational waves, heavy elements

Supernova Phenomenology and Classification

SN 1994d

Crab Nebula:

Gaseous supernova remnant with neutron star, which radiates as pulsar

Credit: NASA, ESA and Allison Loll/Jeff Hester (Arizona State University). Acknowledgement: Davide De Martin (www.skyfactory.org)

Supernova Remnant Tycho

CHANDRA satellite image)

1572: Tycho Brahe observes "new star" that remains visible for months

Cassiopeia A Nebula

Cas A composite image: X-ray (Chandra, green-blue), optical (HST, yellow) & IR (SST, red)

Supernovae in the Universe

- 1-10 supernovae explode in the Universe every second
- ~2 per 100 years in the Milky Way (historical records of ~10 past events, several with visible remnants)
- Several 100 distant supernovae observed every year in surveys

- Energy release in radiation: 10^{49} erg Release of kinetic energy of ejected gas: 10^{51} erg $(1 \text{ erg} = 10^{-7} \text{ J}; 10^{51} \text{ erg} = 1 \text{ bethe} = 1 \text{ B};$ $1 \text{ bethe equals about } 10^{28} \text{ mid-sized H-bombs!})$
- Hypernovae and gamma-ray bursts (GRBs) can release up to 100 times more energy, but occur only in < 1% of all core collapses!

Historical Supernovae

Supernovae in the Milky Way during the last millenium

date	visible for	distance	observed in/by
1006	some years	6 500	far east, Arabia, St.Gallen
1054	about 2 years	7 100	far east, Arabia
1181	6 months	26 000	China, Japan
~1300	?	650	? (RX J0852-4642)
1572	16 months	23 000	Tycho Brahe
1604	about 1 year	32 000	Johannes Kepler
~1680	?	11 000	Flamsted ? (Cas A)
23.2.1987	>18 years	160 000	lan Shelton

Number of observed extragalactic supernovae: > 3100 (since 1885)

Supernova Classification Scheme

Thermonuclear

Core Collapse

Energy source: thermonuclear burning C, O ---> Si, Ni

Energy source: gravitational binding energy of compact remnant (NS, BH)

Supernova Classification Scheme

Supernova Lightcurves

 possibility to measure expansion of universe

Supernova Spectra

Role of Supernovae

- strongest cosmic explosions
- sources of heavy elements
- driving force of cosmic cycle of matter
- sources of neutrinos and gravitational waves: fundamental physics
- acceleration of cosmic radiation
- birth sites of neutrons stars and black holes
- •
- •
- •

SNe in the cosmic cycle of matter

Supernova Types: Summary

Thermonuclear

Core Collapse

(Type Ia)

Stars of low mass (< 8 M_{sun}) highly evolved (white dwarfs) explosive C+O burning

binary stars complete disruption

(Type II, Ib, Ic)

massive stars (> 8 M_{sun}) extended envelopes (espec. Type II) gravitational collapse nuclear burning by compression single stars; binary stars for Type Ib,c compact remnant (NS, BH) Stellar Evolution

Stellar Evolution Equations

Assumed: spherical symmetry, Newtonian gravity, single star

Mass conservation:

$$\frac{\partial M(r)}{\partial r} = 4\pi r^2 \rho(r) \qquad (1)$$

with ρ being the mass density, M(r) the enclosed mass,

and $M(R_*) = M_*$.

Hydrostatic equilibrium:

$$\rho \frac{\mathrm{d}^2 r}{\mathrm{d}t^2} = -\frac{\partial P(r)}{\partial r} - \frac{GM(r)\rho(r)}{r^2} = 0 \qquad (2)$$

with $P = P_{\text{gas}} + P_{\gamma} (+P_{\nu} + P_B + P_{\text{turb}} + P_{\text{deg}} + \dots)$ and $P(R_*) = 0$. In general: $P = P(\rho, T, \text{composition})$.

Energy equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{e}{\rho}\right) - P\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{\rho}\right) = T\frac{\mathrm{d}s}{\mathrm{d}t} = \dot{\varepsilon} - \frac{1}{4\pi r^2 \rho} \frac{\partial L_{\gamma}}{\partial r} ,$$

or

$$\frac{\partial}{\partial r}L_{\gamma}(r) = 4\pi r^{2}\rho(r)\left(\dot{\varepsilon} - T\frac{\mathrm{d}s}{\mathrm{d}t}\right) \qquad (3)$$

with e being the internal energy density, L_{γ} the "luminosity", $\dot{\varepsilon} = \dot{\varepsilon}_{\text{nuc}} - \dot{\varepsilon}_{\nu} - \dot{\varepsilon}_{x}$, and $\dot{\varepsilon}_{\text{grav}} \equiv -T(ds/dt)$ ("gravothermal energy source term" associated with expansion or contraction of mass).

Total energy conservation:

Integrate Eq. (3) over volume, using Eq. (2), to obtain for change of internal, gravitational, and nuclear energy:

$$\frac{\mathrm{d}}{\mathrm{d}t}(E_{\mathrm{i}} + E_{\mathrm{grav}} + E_{\mathrm{nuc}}) = -(L_{\gamma} + L_{\nu}) \qquad (3a)$$

Energy transport:

- by radiative transfer
- by convection
- by heat conduction (irrelevant in ordinary stars)

Consider radiative transfer by diffusion for $\lambda_{mfp} \ll h_P = |dr/d \ln P|$ (pressure scale height).

Fick's law:

$$F_{\gamma} = rac{L_{\gamma}}{4\pi r^2} = -D \,
abla e_{\gamma} = -rac{1}{3} c \lambda_{
m mfp} rac{\partial e_{\gamma}}{\partial r} \; ,$$

with $e_{\gamma} = a_{\gamma}T^4$, $\lambda_{\rm mfp} = (\kappa \rho)^{-1}$ (κ : "opacity") follows

$$\frac{\partial T}{\partial r} = -\frac{3\kappa\rho(r)L_{\gamma}(r)}{16\pi a_{\gamma}cr^2T^3} \qquad (4)$$

Virial theorem:

Perform integration $\int_0^{R_*} dr \, 4\pi r^3 [Eq. (2)]$, using ideal gas EoS,

$$P = (\Gamma - 1)e$$
 with $\Gamma \equiv \left(rac{\partial \ln P}{\partial \ln
ho}
ight)_s$,

to obtain relation between internal and gravitational energy for star in mechanical equilibrium:

$$E_{\rm grav} = -3(\Gamma - 1)E_{\rm i}$$
. (5)

With total energy $E_{\text{tot}} = E_{\text{i}} + E_{\text{grav}}$ one gets for $\Gamma \neq \frac{4}{3}$:

$$E_{\rm i} = -\frac{E_{\rm tot}}{3\Gamma - 4} \ . \tag{5a}$$

Normal stars have $\Gamma = \frac{5}{3}$. When such stars lose energy,

 $dE_{tot}/dt = -L$, they become hotter ("negative specific heat")!

Basic Principles of Stellar Evolution

Basic Principles of Stellar Evolution

Radiating and evolving stars become hotter (have "negative specific heat")

Scaling relations:

From stellar structure equations one obtains by linearization (use $M(r) = 0, L_{\gamma}(r) = 0$ for $r = 0, P(R_*) = 0$, and $P = \overline{P}, \rho = \overline{\rho}$):

$$\frac{P}{M} \sim \frac{M}{R^4} , \qquad \frac{R}{M} \sim \frac{1}{R^2 \rho} , \qquad \frac{T}{M} \sim \frac{L}{R^4 T^3}$$
$$\frac{L}{M} \sim \varepsilon_{\rm nuc} \sim \rho^{\lambda} T^{\nu}$$

and in particular, with the use of $P \propto \rho T/\mu$ (μ : mean molecular weight):

$${T^3\over
ho}\propto M^2~,~~L\propto \mu^4 M^3~,~~ au_{
m nuc}\sim {M\over L}\propto M^{-2}$$

with τ_{nuc} being the nuclear burning timescale.

Basic Principles of Stellar Evolution

$$T^3/\rho \sim M^2$$

* As star contracts and its density grows, T increases like $\rho^{1/3}$ * For given density, stars with larger mass M are hotter

Evolution Tracks of Massive Stars

 Central density increases roughly like 3rd power of central temperature

Stellar Burning Cycles

Stellar Burning Conditions

Brennphase	Brennstoff	Zünd– temperatur [10 ⁹ K]	"Asche"	Energie- erzeugung [10 ¹⁸ erg/g]	Kühlung durch
D–Brennen	² H	0.0004	³ He	~ 0.0001	γ
H–Brennen	$^{1}\mathrm{H}$	0.003	4 He, 14 N	$5\sim 8$	γ
He–Brennen	$^{4}\mathrm{He}$	0.2	^{12}C , ^{16}O , ^{22}Ne	0.7	γ
C–Brennen	¹² C	0.8	²⁰ Ne, ²⁴ Mg, ¹⁶ O, ²³ Na	0.5	ν
Ne–Brennen	²⁰ Ne	1.5	¹⁶ O, ²⁴ Mg, ²⁸ Si,	0.1	ν
O–Brennen	¹⁶ O	2	²⁸ Si, ³² S	0.5	ν
Si–Brennen	²⁸ Si	3.5	⁵⁶ Ni, $A \approx 56$	0.1 - 0.3	ν
Photodisintegration	⁵⁶ Ni	$6 \sim 10$	n, ⁴ He, p	-8	ν

Stellar Equations of State

Stellar Evolution towards Degeneracy

- When stellar gas becomes degenerate: further contraction does not lead to strong heating
- Stars cool at nearly fixed density
- Maximum central density and burning stage depends on stellar mass

Stellar Evolution towards Degeneracy

Stars reach limiting burning stage and become degenerate:

0.013 M_{sun} < M < 0.08 M_{sun} : deuterium burning $0.08 M_{sun} < M < 0.5 M_{sun}$: hydrogen burning $0.5 M_{sun} < M < 7-8 M_{sun}$: hydrogen and helium burning

 $M < -8 M_{sun}$: final stage of evolution is a **white dwarf** and planetary nebula before stars reach the central carbon burning

White Dwarfs and Planetary Nebula

Ant Nebula

NGC 3132

Basic Principles of Stellar Evolution

Phases	0.6 M _{sun}	1 M _{sun}	20 M _{sun}
Formation	~ 100 Mill. Jahre	30 Mill. Jahre	55 000 Jahre
Main Sequence	50–75 Mrd. Jahre	6–10 Mrd. Jahre	8.5–10 Mill. Jahre
Giants & Variables	5–10 Mrd. Jahre	1.5–3 Mrd. Jahre	~ 0.7 Mill. Jahre

(Mill. Jahre = million years; Mrd. Jahre = billion years)

Stellar Burning Stages of Stars with $M > 10 M_{sun}$

Stars with more than ~9-10 solar masses reach all possible stages of nuclear burning

Stage	Timescale	Fuel or product	Ash or product	Temperature (10 ⁹ K)	Density (gm cm ⁻³)	Luminosity (solar units)	Neutrino losses (solar units)
Hydrogen	11 Myr	Н	He	0.035	5.8	28,000	1,800
Helium	2.0 Myr	He	C, O	0.18	1,390	44,000	1,900
Carbon	2000 yr	C	Ne, Mg	0.81	2.8×10^{5}	72,000	3.7×10^{5}
Neon	0.7 yr	Ne	O, Mg	1.6	1.2×10^{7}	75,000	1.4×10^{8}
Oxygen	2.6 yr	O, Mg	Si, S, Ar, Ca	1.9	8.8×10^{6}	75,000	9.1×10^{8}
Silicon	18 d	Si, S, Ar, Ca	Fe, Ni, Cr, Ti,	3.3	4.8×10^{7}	75,000	1.3×10^{11}
Iron core collapse*	~1 s	Fe, Ni, Cr, Ti,	Neutron star	>7.1	$> 7.3 \times 10^{9}$	75,000	$> 3.6 \times 10^{15}$

The pre-supernova star is defined by the time at which the contraction speed anywhere in the iron core reaches 1,000 km s⁻¹.

Final Stages of Stellar Evolution

- M > ~8 M_{sun}: stars develop electron-degenerate cores and onion shell structure before the core undergoes a gravitational collapse
- ~8 M_{sun} < M < ~9-10 M_{sun}: O-Ne-Mg cores are formed
- M > ~9-10 M_{sun}: iron cores are formed

Onion Shell Structure

Chandrasekhar Mass Limit

Self-gravitating configurations supported by pressure of relativistic electrons (fermions) have a maximum mass for stable hydrostatic equilibrium:

$$M_{\rm Ch} = 1.457 (2Y_{\rm e})^2 {
m M}_{\odot}$$
Final Stages of Stellar Evolution

 White dwarfs/stellar cores with M_{*} ---> M_{ch} approach gravitational instability: Hydrostatic (mechanical) equilibrium breaks down

> -----> contraction, possibly collapse to neutron star

• Mechanical equilibrium impossible when "effective" adiabatic index

$$\Gamma_{\rm eff} = (\partial \ln P / \partial \ln \rho)_{\rm s} - \delta_{\rm GR} + \delta_{\rm rot} - \delta_{\rm Vloss} < \Gamma_{\rm crit} = 4/3$$

Reason: for P =
$$(\Gamma_{eff} - 1)e = K\rho^{\Gamma_{eff}}$$
 with $\Gamma_{eff} = \Gamma_{EoS} + \varepsilon < 4/3$, the pressure gradient increases less steeply than the gravitational force: P/R $\propto \rho^{5/3+\varepsilon}$; GM/R² $\propto \rho^{5/3}$

• Neutrino losses (electron captures) and general relativistic corrections destabilize, nucleon pressure and rotation help stabilizing

Final Stages of Massive Star Evolution

Core Collapse Events and Remnants

Core Collapse Events and Remnants

Core-Collapse Events

A heterogeneous class with growing diversity

- Observational diversity: Large variability due to structure of stellar mantle and envelope at time of explosion
- Intrinsic explosion differences: Events also differ largely in energy and Ni production
- Determining factors of stellar evolution:
 - * mass of progenitor star
 - * "metallicity" (i.e., heavy element abundances of stellar gas at formation)
 - * binary effects
 - * mass loss during stellar evolution
 - * stellar rotation and magnetic fields
- These factors decide about whether:
 - * neutron star (NS) or black hole (BH) forms in collapse;
 - * explosion mechanism, explosion energy, & Ni production;
 - * lightcurve and spectral properties <--> SN classes;
 - * anisotropy of explosion

Thermonuclear (Type Ia) Supernovae

Standard candles for measuring the universe

Type Ia Supernovae

Exploding accreting white dwarfs in binary systems

"standard candles"

Type Ia SNe and Cosmology

Observational Constraints of Cosmic Parameters

WMAP results from Spergel et al. 2003

REFLEX results from Schuecker et al. 2003 (three weeks before WMAP publication)

Hydrodynamics Equations

mass conservation:

$$rac{\partial
ho}{\partial t} = -
abla \cdot (
ho ec v)$$

non-linear term => turbulence

- momentum balance: $\frac{\partial \vec{v}}{\partial t} = -(\vec{v}\nabla) \cdot \vec{v} - \frac{\nabla P}{\rho} - \frac{\nabla P}{\rho} = -(\vec{v}\nabla) \cdot \vec{v} - \frac{\nabla P}{\rho} = -(\vec{v}\nabla) \cdot \vec{v}$
- species balance:

$$\frac{\partial(\rho X_i)}{\partial t} = -\nabla \cdot (\rho X_i \vec{v}) - \rho \omega_{X_i}, \qquad i = 1, \dots, N$$

energy balance:

$$\frac{\partial(\rho e_{\rm tot})}{\partial t} = -\nabla \cdot (\rho e_{\rm tot} \vec{v}) - \nabla(P \vec{v}) + \rho \vec{v} \cdot \vec{f} + \rho S$$

closed by EoS

Supernova Ia Simulations

- Multi-dimensional (3D)
- Nuclear burning
- Long evolution timescales
- Turbulence: large scale differences!
- Extremely CPU intense

How does the model work?

Temperature: a few 109 K

Radii: a few 1000 km

Explosion energy: Fusion C+C, C+O, $O+O \rightarrow "Fe"$

Laminar burning velocity: $U_L \sim 100 \text{ km/s} << U_s$

Too little is burned!

Shock jump conditions --- Rankine-Hugoniot conditions:

2

 $-v_D\left(\mathbf{U}_2-\mathbf{U}_1\right)=\mathbf{F}_2-\mathbf{F}_1$

oder komponentenweise

$$v_D \left[\rho \right] = \left[\rho u \right]$$
$$v_D \left[\rho u \right] = \left[\rho u^2 + p \right]$$
$$v_D \left[\rho e \right] = \left[(\rho e + p) u \right]$$

wobei $[A] \equiv A_2 - A_1$ gilt.

In system comoving with shock front, i.e. where $v_D = 0$:

$$\rho_1 u_1 = \rho_2 u_2$$

$$\rho_1 u_1^2 + p_1 = \rho_2 u_2^2 + p_2$$

$$u_1(\rho_1 e_1 + p_1) = u_2(\rho_2 e_2 + p_2)$$

combustion wave:

What is the mode of nuclear burning in SNe Ia?

"Detonation":

(Super-) Sonic front; heating to ignition by a shock wave. "Deflagration": Subsonic front; heating to ignition by heat diffusion. Strong Si-lines at maximum light: Pure detonations are excluded! (But possibly at lower densities???)

The physics of turbulent combustion

Everydays experience: *Turbulence increases the burning velocity.*

In a star: Reynoldsnumber ~ 10^{14} ! In the limit of strong turbulence: $U_B \sim V_T$! Physics of thermonuclear burning is very similar to premixed chemical flames.

fuel density ahead of combustion front determines nucleosynthesis:

Deflagration allows pre-expansion of WD

-----> leaves too much unburned C, O ====> pure deflagrations are also not possible

for all SNIa !

Type Ia Supernovae – Achievements and Insights

- Deflagration models explode.
- Explosion energy ~0.8*10⁵¹ ergs (a bit low), too much unburned C+O.
- Need of deflagration to detonation transition.
- Explosion energy and produced Ni depends on ignition conditions but not on composition.
- Brightness depends on amount of Ni produced, but only weakly on C+O composition.

Deflagration to Detonation Transition

Röpke (2008)

Type Ia Supernovae – Open Questions and Problems

- Are there different types of progenitors? Progenitor systems have not been observed yet ! ("single degenerate" and "double degenerate" scenarios.)
- How does thermonuclear ignition of white dwarf start?
- Where and how does transition from deflagration to detonation occur?
- What is the reason for the Phillips relation? Are there any systematic uncertainties?

Contents

Lecture I :

- Supernovae: classification and phenomenology
- Basics of stellar evolution & death scenarios
- White dwarfs and thermonuclear supernovae

Lecture II :

- Gravitational (core-collapse) supernovae: evolution stages
- Neutron stars and their birth
- Black holes and gamma-ray bursts
- Observable signals: neutrinos, gravitational waves, heavy elements

Core Collapse Events

Final Stages of Stellar Evolution

- 8 M_{sun} < M < 9 M_{sun}: onion shell structure with O-Ne-Mg core
- 9 M_{sun} < M < 100 M_{sun}: onion shell structure with iron core

Gravitational collapse :

- M = 8-25 M_{sun}: neutron star and supernova explosion
- M > 25 M_{sun}: black hole and (sometimes) hypernova explosion and gamma-ray burst

Zwiebelschalen-Struktur

Final Stages of Massive Star Evolution

Core Collapse Events and Remnants

Core Collapse Events and Remnants

Core-Collapse Events

A heterogeneous class with growing diversity

- Observational diversity: Large variability due to structure of stellar mantle and envelope at time of explosion
- Intrinsic explosion differences: Events also differ largely in energy and Ni production
- Determining factors of stellar evolution:
 - * mass of progenitor star
 - * "metallicity" (i.e., heavy element abundances of stellar gas at formation)
 - * binary effects
 - * mass loss during stellar evolution
 - * stellar rotation and magnetic fields
- These factors decide about whether:
 - * neutron star (NS) or black hole (BH) forms in collapse;
 - * explosion mechanism, explosion energy, & Ni production;
 - * lightcurve and spectral properties <--> SN classes;
 - * anisotropy of explosion

"Ordinary" Supernovae

Gravitational collapse and explosions of stars with $8 M_{sun} < M_{*} < 100 M_{sun}$

Sanduleak -69 202 Supernova 1987A 23. Februar 1987

Supernova 1987A

- Birthday: Februar 23rd, 1987
- Birth place: Large Magellanic Cloud
- Distance: about 170,000 lightyears
- Origin: blue supergiant star with about 20 solar masses
- Importance:
 - * only nearby supernova in the past 400 years that was visible to the naked eye
 - * unprecidented wealth of observational data
 - * first measurement of extragalactic neutrinos
 - * unambiguous information about strongly turbulent processes during stellar explosions

Supernova 1987A as a teenager

Stellar Collapse & Explosion

(adapted from A. Burrows)
energy sources for a core collapse supernova explosion

gravitational binding energy (SNe II, Ib, Ic) formation of a compact object of ~1 solar mass with a radius ~10km

$$E_{\rm b} \approx 3 \times 10^{53} \left(\frac{M}{\rm M_{\odot}}\right)^2 \left(\frac{R}{10\,\rm km}\right)^{-1} \ {\rm ergs}$$

Neutrino energy $E_v = E_b^{}$ $\approx 100 \times E_{kin}^{}$ of SN explosion $\approx 10^{51} \text{ erg} = 10^{44} \text{ J}$

Neutrino Burst of Supernova 1987A

Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty ±1 min

Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty ±50 ms

Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

Within clock uncertainties, signals are contemporaneous

Supernova 1987A

Two dozen (of 10⁵⁸) neutrinos were captured in underground laboratories!

Neutrino Luminosities (schematic)

Interpreting SN 1987A Neutrinos

SN 1987A: Neutrino Signal

- Neutrino signal was used to constrain properties of neutrinos and other particles that may be produced in the SN core (e.g. axions)
- Neutrinos were used as probe of fundamental physics
- Neutrinos provided evidence for neutron star formation

Neutron Star Equations of State

Detecting Core-Collapse SN Signals

What happens in the Supernova Core?

Stellar core collapse

- Neutrinos produced by electron captures escape: no β -equilibrium ----> deleptonization, neutronization of stellar gas
- Little entropy change -----> collapse proceeds nearly adiabatically
- Initially neutrinos escape freely
- For densities > ~ 1/100 of nuclear matter: neutrinos get trapped (diffusion timescale becomes longer than collapse timescale)

Core collapse supernovae:

- prompt explosion mechanism does not work

(explored during the 1970's and 1980's; commonly accepted early 1990's)

shock wave forms close to
sonic point (M ~ 0.5 M_{sun})
initial energy: (5 ... 8) x 10⁵¹ erg

severe energy losses during shock propagation (8 MeV/nucleon or 1.6 x 10⁵¹ erg/0.1M_{sun})

Core collapse supernovae: neutrino-driven delayed explosion (Wilson '82, Bethe & Wilson '85)

neutrinos diffuse out of opaque proto-neutron star $(\tau_v \sim 1)$

neutrinos heat matter in semitransparent ($\tau_v \sim 1$) post-shock region ---> convection with coexisting downflows and rising hot bubbles sets in

neutrinos stream freely through stellar envelope ($\tau_{v} \ll 1$) current paradigm: neutrino driven delayed explosions (discovered through computer simulations by Wilson '82, and first analyzed by Wilson & Bethe '85)

Neutrino Heating of SN Shock

$$\nu_{\rm e} + n \iff e^- + p$$
$$\bar{\nu}_{\rm e} + p \iff e^+ + n$$

$$Q_{\rm net} = Q_{\nu_{\rm e},\bar{\nu}_{\rm e}}^+ - Q_{\nu_{\rm e},\bar{\nu}_{\rm e}}^- = \text{const} \left[T_{\nu}^6 (R_{\nu}/2r)^2 - T^6 \right]$$

Neutrino heating around neutron star dominates over cooling because $T(r) \propto r^{-1}$

Hydrodynamical Instabilities

Rayleigh-Taylor instability

Kelvin-Helmholtz instability

standing accretion shock instability (SASI)

Core collapse supernovae need multidimensional modeling !

Ledoux convection inside proto-neutron star due to negative lepton and entropy gradients (Keil, Janka & Müller '96)

Convection in the surface layers of the proto-neutron star and in the hot bubble 78 msec after core bounce (Janka & Müller '96)

SASI in SN Cores

"Standing Accretion Shock Instability" (Blondin et al. 2003)

- occurs also when convection is suppressed or weak
- grows in oscillatory way
- Dipole and quadrupole modes grow fastest ====> global asymmetry
- is caused by an "advective-acoustic feedback cycle"
- seen in 2D as well as 3D simulations

o,[A(R₉,0)

ondin & Mezzacappa 2006)

time [s]

t = 0.335 sec

= 0.144 sec

Modeling Stellar Collapse and Explosion

Supernova Simulations

- multi-dimensional
- complex microphysics
- long evolution timescales
- large radial scale difference
- extremely CPU intense

Neutrino Reactions in Supernovae

Beta processes:

Neutrino scattering:

Thermal pair processes:

Neutrino-neutrino reactions:

• $e^- + p \rightleftharpoons n + v_e$

•
$$e^+ + n \rightleftharpoons p + \bar{v}_e$$

- $e^- + A \rightleftharpoons v_e + A^*$
- $v + n, p \rightleftharpoons v + n, p$
- $\nu + A \rightleftharpoons \nu + A$
- $v + e^{\pm} \rightleftharpoons v + e^{\pm}$
- $N+N \rightleftharpoons N+N+\nu+\bar{\nu}$

•
$$e^+ + e^- \rightleftharpoons v + \bar{v}$$

- $v_x + v_e, \bar{v}_e \rightleftharpoons v_x + v_e, \bar{v}_e$ $(v_x = v_\mu, \bar{v}_\mu, v_\tau, \text{ or } \bar{v}_\tau)$
- $v_e + \bar{v}_e \rightleftharpoons v_{\mu,\tau} + \bar{v}_{\mu,\tau}$

Recent Results of Simulations

SN Simulations:

"Electron-capture supernovae" or "ONeMg core supernovae"

Kitaura et al., A&A 450 (2006) 345; Janka et al., A&A 485 (2008) 199

Convection is not necessary for launching explosion but occurs in NS and in neutrino-heating layer

- No prompt explosion !
- Mass ejection by "neutrino-driven wind" (like Mayle & Wilson 1988 and similar to AIC of WDs; see Woosley & Baron 1992, Fryer et al. 1999; Dessart et al. 2006)
- Explosion develops in similar way for soft nuclear EoS (i.e. compact PNS) and stiff EoS (less compact PNS)

SN Simulations: $M_{star} \sim 8...10 M_{sun}$

Müller et al. (in preparation)

Low explosion energy and ejecta composition – little Ni, C, O – of CRAB (SN1054) is compatible with ONeMg core explosion

(Nomoto et al., Nature, 1982; Hillebrandt, A&A, 1982)

Might also explain other lowluminosity supernovae (e.g. SN1997D, 2008S, 2008HA)

2D SN Simulations: $M_{star} \sim 11 M_{sun}$

For explosions of stars with M > 10 M_{sun} multi-dimensional effects (nonradial hydrodynamic instabilities) are crucial ! Low-mode nonradial (dipole, I=1, and quadrupole, I=2) "standing accretion shock instability" ("SASI"; Blondin et al. 2003) develops and pushes shock to larger radii

===> This stretches residency time of matter in neutrino heating layer and thus increases neutrino energy deposition; Initiation of globally aspherical explosion by neutrino heating even without rotation

Violent SASI oscillations, 400 Physical time: t=610 ms 40

star

2D SN Simulations: M = 15 M

sun

30

20

10

400

s[kB/baryon]

Consequences and Implications of SASI in Stellar Explosions

- Charactersitic neutrino signal modulations
- Gravitational wave signals
- Neutron star kicks
- Asymmetric mass ejection & large-scale radial mixing

Neutrinos and Gravitational Waves

Lund et al., PRD, sumitted; arXiv:1006.1889

For a galactic supernova:

- Variations of neutrino emission clearly detectable with ICECUBE
- Gravitational waves should be observable with advanced LIGO and VIRGO

Neutron Star Kicks

Puppis A

Guitar Nebula

Neutron Star Recoil

- Stochastic and chaotic growth of instabilities
 ===> different explosion asymmetries
- NS receives kick by hydrodynamic recoil
- NS velocities up to $v_{NS} > 1000$ km/s in 2D

Scheck et al. (PRL, 2004), Scheck et al. (A&A, 2006)

Supernova Asymmetries

Parametric Explosion Studies in 3D

- Explosions in 3D show also very large asymmetries
- Accretion flow to neutron star develops I = 1 mode also in 3D
- Should produce neutron star kicks similar to 2D

3D with rotation (Scheck, PhD Thesis 2006)

Mixing Instabilities in 3D SN Models

Gamma-Ray Bursts (GRBs) and Black Hole Formation

GRB Phenomenology I

GRB Phenomenology II

- High variability
- Fast time modulation
- Afterglows (AGs) seen at cosmological distances (z > 1)

GRB-Supernova Associations

GRB 990123

GRB and Afterglow Scenarios

Gamma-Ray Bursts and Hypernovae

- Occur in rare cases of very rapidly rotating, very massive stars with sufficient mass loss until collapse
- Black hole formation (?)
- BH accretion and ejection of very narrow, ultrarelativistic GRB jet, can be accompanied by hypernova explosion
- Jet is driven by magnetohydrodynamic (MHD) effects and/or neutrino-antineutrino annihilation
- Extremely energetic stellar explosion by MHD mechanism or viscous energy release in accretion disk

Short GRBs

Short GRBs: NS+NS/BH Mergers

- Short GRBs seem to originate from compact binary mergers (<10 sGRBs with known redshifts)
- BH formation and accretion
- γ-energies about 1% of long-GRBs

Ruffert et al. Rosswog et al. Oechslin et al. Shibata et al.

