

Washington University in St. Louis

What presolar grains tell us about stellar nucleosynthesis

Ernst Zinner Washington University St. Louis, MO

WE-Heraeus Summer School on Nuclear Astrophysics in the Cosmos

Our Stellar Origins: Some History

Observation of regularities in the abundance of the chemical elements in the Solar System

Harkins W. D. (1917) Am. Chem. Soc. 39, 856
Russell H. N. (1929) *Ap. J.* 70,11
Suess H. E. and Urey H. C. (1956). *Rev. Mod. Phys.* 28, 53-74.
Cameron A. G. W. (1973) *Space Sci. Rev.* 15, 121-146.
Anders E. and Ebihara M. (1982) *Geochim. Cosmochim. Acta* 46, 2363-2380.
Anders E. and Grevesse N. (1989) *Geochim. Cosmochim. Acta* 53, 197-214.

Abundance patterns reflect nuclear properties

Production of the Elements

Bethe H. A. (1939) No elements heavier than ⁴He can be built up in ordinary stars.
Hoyle F. (1946, 1954) Stellar production of ¹²C in Red Giant

cores. Speculates on stellar synthesis of elements up to Fe.
Alpher R., Bethe H. A & Gamow G.- αβγ (1948) Nucleosynthesis in the early universe (Big Bang NS).
Fermi E. & Turkevich T. (1950) Only elements up to Li can be synthesized in the early universe.
Merrill P. W. (1952) Detection of unstable Tc in the spectra from S stars is evidence for stellar nucleosynthesis.
Burbidge G. & M., Fowler W. & Hoyle F. B²FH (1957) and Cameron (1957) propose 8 processes in stars to produce

the elements.

B²FH proposed 8 different nucleosynthetic processes. What stars produce and eject elements into the interstellar medium?

Asymptotic Giant Branch (AGB) stars

Type II (core-collapse) Supernovae

What is an AGB star?

Evolution of a 1M_☉ star in the Hertzsprung-Russell diagram.

Schematic Structure of an AGB star

Planetary Nebulae

Helix Nebula

Cat Eye Nebula

Structure of a massive star (mass > 10 M_{\odot}) before explosion as a supernova.

Supernova Remnants

Cassiopeia A

1680 3.4 kpc

Data for checking nucleosynthesis theory Cosmic abundances of the elements An average of many stellar sources Astronomical observations Limited to certain stars. Isotopic data only for few elements

Stardust from primitive meteorites

The Allende meteorite, 4.6 Gyrs old, contains stardust

Supernova

Molecular Cloud

Presolar Grains

Protoplanetary Disk

AGB Star

Asteroids and Comets

Meteorites and Interplanetary Dust Particles

Cartoon by Larry Nittler

In the last 20 years a new source of information on isotopic abundances in stars has become available in the form of stardust preserved in primitive meteorites.

Grains from Red Giants or supernovae were included into the molecular cloud that collapsed into our Solar System.

Some of these grains are preserved in primitive meteorites, from which they can be extracted and studied in detail in the laboratory.

Some History

Isotopically anomalous noble gases were found in meteorites in late 60s.

Ne-E(L): 20 Ne/ 22 Ne < 0.01 (Solar 20 Ne/ 22 Ne = 9.8) close to pure 22 Ne (Black & Pepin)

The huge isotopic anomalies in noble gases could be best explained by nucleosynthesis in stars, not by processes occurring in the solar system.
Stardust hidden in meteorites?

Effort to isolate carriers of anomalous noble gases
 (Edward Anders, Roy S. Lewis and their coworkers)

Difficulities

Abundances of the carriers are low (<0.01%). They are small (a few µm or less).

Anomalous noble gases served as tracers to isolate these minerals.

"Burn the haystack to find a needle" (Edward Anders)

Many chemical and physical separation steps are necessary to "burn the haystack" and isolate presolar graphite and SiC grains.

Different layers of "graphite" grains of different densities in Na-polytungstate liquid. There is a density gradient in the liquid.

Presolar Grains Stardust

Types: Silicon Carbide, Graphite, Oxides, Silicates

Size: 1 μ m = 1/1000 mm

Mass: Picogram

One grains contains 10 billion atoms

They are older than the Solar System

How do we know the grains are stardust?

We measure their isotopic compositions and they are completely different from those of Solar System material.

ANALYSIS TECHNIQUES

1. "Bulk Analysis" (large number of grains)

TIMS and Gas Mass Spectrometry

Noble Gases, Sr, Ba, Nd, Sm Separation by grain size, step-wise heating and/or combustion

Can measure trace elements but obtain only averages

2. Single Grain Analysis (SIMS, RIMS and Gas MS)

Find tremendous variations from grain to grain Correlation on grain by grain basis: **Stellar Histories** of individual grains

Can identify and study **Rare Subpopulations** of grains

Locate New Types of circumstellar grains

Disadvantage: Limited amount of sample restricts analysis to major and minor elements

Schematic of the SIMS instrument

Isobaric isotopes (e.g., ⁹⁴Zr and ⁹⁴Mo) cannot be separated in the mass spectrometer. RIMS makes analysis of only one element possible.

Schematic of a Resonance Ionization Mass Spectrometer (RIMS).

Irradiation with well-tuned laser light ionizes only a given element.

Deposit of 0.5 μ m spinel grains on a gold foil for NanoSIMS analysis.

Analysis of well-separated grains.

Another example of individual grain isotopic analysis in the NanoSIMS. Shown is an SEM image after ion probe analysis.

Effects of sputtering by the primary ion beam.

NanoSIMS analysis of an ultratome section of a presolar graphite grain.

Isotopic ratio image of ¹⁶O/¹⁸O inside a presolar graphite grain. The grain has a large ¹⁸O excess. The solar ratio is 500.

Isotopic anomalies in presolar grains are orders of magnitude larger than variations in solar system materials.

Graphite

 $^{25}Mg/^{24}Mg$: ×3 solar

 $^{26}Mg/^{24}Mg$: ×288 solar

Excess ²⁶Mg: ²⁶Mg from neutron capture is negligible;the decay of ²⁶Al still dominates.

In some grains Mg is dominated by radiogenic ²⁶Mg.

"Extinct" isotopes

²⁶Al (T_{1/2} = 7.3 × 10⁵a) ⇒ ²⁶Mg ⁴¹Ca (T_{1/2} = 1.0 × 10⁵a) ⇒ ⁴¹K ⁴⁴Ti (T_{1/2} = 60a) ⇒ ⁴⁴Ca

Since meteorites formed 4.5×10^9 years ago and presolar grains, which are extracted from meteorites, are older than meteorites,

²⁶Al, ⁴¹Ca and ⁴⁴Ti can be inferred from their daughter isotopes (²⁶Mg, ⁴¹K, ⁴⁴Ca).

Another example that isotopic anomalies in presolar grains are much larger than those in SS materials.

Figure 2

Deposit of small matrix grains from the primitive meteorite Acfer 094 for isotopic imaging to detect anomalous grains.

$\delta^{17}O/16O$

1920-1750-1500-1250-1000-750-250-250--250--500--750--1000-

10x10 µm

²⁴Mg¹⁶O

5-

Signatures of Hydrogen and Helium burning are shown by presolar oxide and graphite grains.

Grains from AGB stars

SiC grains come from different stellar sources

The distribution of carbon isotopic ratios in graphite grains is different from those of mainstream and SN SiC grains, indicating distinct stellar sources.

Also the inferred ²⁶Al/²⁷Al ratios are greatly different between X (SN) grains and other grains.

A M Davis, U Chicago

There is very good agreement between SiC data and AGB models.

Abundance enhancements of s-process elements are another piece of evidence for an AGB origin of most SiC grains.

Two important pieces of information on s-process obtained from grains.

- ⁹⁶Zr is extremely depleted, implying that the ²²Ne neutron source is not activated and grains do not come from intermediate mass stars.
- The Ba isotopic ratios indicate that the "¹³C-pocket" is within the standard pocket within a factor of less than two.

A M Davis, U Chicago

Different types of presolar SiC grains are defined by their C, N, and Si isotopic ratios.

The ^{29,30}Si excesses in presolar SiC grains are a problem. Whereas the isotopic ratios of C, N, and the heavy elements (Sr, Zr, Mo, etc.) in SiC from AGB stars are completely dominated by stellar nucleosynthesis, the elements Si and Ti carry the signatures of both Galactic evolution (original compositions of the parent stars) and AGB nucleosynthesis (neutron capture).

Mainstream, Y and Z grains are believed to have originated in Crich AGB stars of varying metallicities.

- 1. Dredge-up of ¹²C turns the star into a C-star and increases the ¹²C/¹³C ratio
- 2. n capture on Si increases the ³⁰Si/²⁸Si ratio

Deconvolve the Si isotopic composition of a given grain into a Galactic component δ^{29} Si_{init} and an AGB component Δ^{30} Si.

Models of AGB stars predict Si isotopic shifts for different masses, metallicities and mass loss. The Guber et al. cross sections account better for the isotopic ratios of the Z grains.

As expected, the data show a correlation between the Galactic component $\delta^{29}Si_{init}$ and the ABG component Δ^{30} Si. Models with the Guber cross sections give a better fit to the data.

The grains' Δ^{30} Si values and the models can be used to infer the metallicity Z of each grain. Thus it is possible to determine δ^{29} Si_{init} as function of Z, i.e., the Galactic evolution of the Si isotopic ratios. The grain data indicate that Si ratios rise much faster than predicted by SNII-based GCE models.

Ti isotopic ratios in SiC are correlated with the Si ratios.

Mainstream, Y and Z grains are believed to have originated in Crich AGB stars of varying metallicities.

Models of AGB stars predict Si isotopic shifts for different masses, metallicities and mass loss. The Guber et al. cross sections account better for the isotopic ratios of the Z grains.

As expected, the data show a correlation between the Galactic component $\delta^{29}Si_{init}$ and the ABG component Δ^{30} Si. Models with the Guber cross sections give a better fit to the data.

For all lowmetallicity models, required to explain the Si shifts, the $^{12}C/^{13}C$ ratios are much higher than these ratios are in grains.

Model compositions of a 5 M_{\odot} star after H exhaustion in the core. After the 1st dredge-up the surface is enriched in ¹³C.

For all lowmetallicity models, required to explain the Si shifts, the $^{12}C/^{13}C$ ratios are much higher than these ratios are in grains.

Nittler et al. (1997) distinguished four groups of O-rich presolar grains. The O isotopic ratios of group 1 grains can be explained by first dredge-up, but not those of group 2 grains.

The 1st dredge-up also enriches the surface in ¹⁷O and depletes it in ¹⁸O.

If it is assumed that cool bottom processing occurs also during the AGB phase, low enough ¹²C/¹³C ratios can be achieved to reproduce the Z grain data.

 $^{2}C/^{13}C$

While he ${}^{12}C/{}^{13}C$ ratio increases from mainstream to Y grains, Z grains have smaller ¹²C/¹³C ratios, in contrast to theoretical models. Extra mixing (Cool **Bottom Processing**) has been invoked as an explanation.

Nittler et al. (1997) distinguished four groups of O-rich presolar grains. The O isotopic ratios of group 1 grains can be explained by first dredge-up, but not those of group 2 grains.

In AGB stars, ²⁶Al/ 27 Al ratios > 4x10⁻³ and ¹⁸O/¹⁶O ratios $< 10^{-3}$ cannot be explained by "normal" shell H burning and "cool bottom processing" has been invoked to explain these ratios.

Cool bottom processing is an assumed mixing process in which material from the convective envelope is circulated to hot regions close to the H-burning shell. Nollett et al. (2003) developed a parametric theory. They introduced two parameters, the circulation rate dM/dt and the maximum temperature T_p reached by the circulating material.

dM/dt mostly affects the destruction of 18 O (and the production of 13 C from 12 C), the maximum temperature T_p reached by the circulating material affects the production of 26 Al.

Upper limits of ²⁶Al/²⁷Al ratios in SiC grains from AGB stars generally agree with model predictions of shell H burning. In contrast, ²⁶Al/²⁷Al ratios in oxide grains are much higher. Cool bottom processing at high temperature apparently does not occur in the parent stars of SiC grains, although low-temperature CBP accounts for ¹²C/¹³C ratios in Z grains.

Does CBP prevent AGB stars from becoming carbon stars?

Grains from Supernovae

Schematic Structure of 15M_☉ Star Before Explosion (Meyer et al., 1995)

Si isotopes show the signatures of O burning.

grain

thus they are considered to be Stellar Fossils.

Bonanza Grain

 ${}^{12}C/{}^{13}C = 190$ ${}^{14}N/{}^{15}N = 28$ $\delta^{29}Si/{}^{28}Si = -282$ $\delta^{30}Si/{}^{28}Si = -442$ ${}^{26}Al/{}^{27}Al = 0.6-0.9$

⁴⁴Ca excess is associated with a Ti-rich subgrain, thus it originates from the decay of ⁴⁴Ti ($T_{1/2} = 60$ yrs).

r process

No evidence for the r-process has been found to date in presolar grains. SiC grains from SNIIe show an isotopic pattern in Mo that can be explained by a short intense neutron burst.

SiC X grains from SNIIe show an isotopic pattern in Mo that can be explained by a short intense neutron burst.

p process γ process

A SiC grain of type A+B $({}^{12}C/{}^{13}C=4.5)$ has excesses in the p-process isotopes ${}^{92}Mo, {}^{94}Mo, {}^{96}Ru,$ and ${}^{98}Ru$. Large excesses are predicted for inner zones of Type II SNe (model fits).

Savina et al., 2007

The initial presence of ⁴¹Ca (from ⁴¹K excesses) is evidence for a SN origin.

X grains have (mostly) ¹²C excesses and ¹⁵N excesses.

Also the inferred ²⁶Al/²⁷Al ratios are greatly different between X (SN) grains and other grains.

Compare grain data with SN models.

The He/N and He/C zones are the only zones with C>O. ²⁸Si, ⁴⁴Ti, and ⁴⁹V are produced in the inner Si/S and O/Si zones.

Can cover the N and C ratios of X grains but need the ¹⁵N spike. The 15 and 20 M_☉ SN models by Limongi and Chieffi don't have ¹⁵N excesses anywhere in the star.

The C and Al isotopic ratios in X grains cannot be explained by SN mixing models.

The ¹²C/¹³C ratio is high in the He/C zone and low in the He/N zone. The ²⁶Al/²⁷Al ratio behaves in the opposite way.

The most interesting cases are when grain data do NOT agree with theoretical models. The Si isotopic ratios of X grains are another example.

A He/N-He/C mix has ²⁹Si and ³⁰Si excesses.

Hoppe et al. proposed a contribution from the O/Ne zone to explain the composition of a grain with an ²⁹Si excess and ³⁰Si deficit.

The O/Si zone is rich in ³⁰Si and has much more Si than the O/Ne zone.

X grains also have large ⁴⁹Ti excesses, possibly from the decay of ⁴⁹V ($T_{1/2} = 336d$).

The He/N and He/C zones are the only zones with C>O. ²⁸Si, ⁴⁴Ti, and ⁴⁹V are produced in the inner Si/S and O/Si zones.

 44 Ti/ 48 Ti ratios are higher in X2 grains and there is a correlation with δ^{29} Si/ 28 Si.

2500 2500 X1 X2 2000 2000 1500 1500 **049Ti/48Ti (%0)** 000 000 849Ti/48Ti (%o) 1000 500 0 0 -500 -500 -1000 | . . -500 -1000 -500 500 1000 1500 -250 -1000 2000 250 0 500 Ó δ46Ti/48Ti (%o) δ47Ti/48Ti (‰)

⁴⁶Ti and ⁴⁹Ti also show some deficits.

Mix He/N-He/C mix (with ¹²C/¹³C=100) with different layers from Si/S and O/Si zones.

Large ⁴⁹Ti excesses from n-capture are in the He/C and O/C zones.

In the He/N-He/C mix with ${}^{12}C/{}^{13}C=100,$ $\delta^{49}Ti/{}^{48}Ti=522.$

A few X2 grains with large ⁴⁴Ti/⁴⁸Ti ratios show ⁴⁶Ti deficits, indicating contributions from the inner Si/S zone. There is no indication for contributions from the outer Si/S and the O/Si zone. A similar conclusion has been made from Fe isotopic ratios in X grains.

Deficits in ⁴⁹Ti and ⁴⁶Ti can be achieved by mixing with the Ni core.

SN mixes show the same sign of the correlation between ⁴⁴Ti/⁴⁸Ti and ²⁹Si/²⁸Si. X2 grains data lie outside of the region spanned by mixing curves and require contributions from the Ni core.

ANOTHER CHALLENGE

No significant ⁵⁴Fe excesses are seen in X grains, although the Si/S zone has a very high ⁵⁴Fe abundance.

AB grains have low ¹²C/¹³C ratios.

The distribution of the Si isotopic ratios of AB grains is the same as that of mainstream grains.

From Lodders and Fegley (1998)

CARBON STARS

- J and R stars as well as CH giants have low ¹²C/¹³C ratios
- 2) CH giants seem to be excluded because they have low metallicities
- J stars have solar abundances of s-process elements, R stars have hs/Fe>solar. J(N) stars have circumstellar dust shells (with SiC) whereas R stars don't
- J-type carbon stars are the most likely parent stars of A+B grains

Born-again AGB stars (Sakurai's object) have also low $^{12}C/^{13}C$ ratios but are expected to show the signature of the s-process.

Group 1: RG or AGB stars (1st DUP). Group 2: stars with CBP Group 3: low metallicity stars, SNe? Group 4: high metallicity; SNe

Presolar Silicate Grains

Presolar Silicates

- newest major addition to presolar grain inventory
- found in most primitive extraterrestrial materials
- large variations in reported abundances:

 highest in primitive IDPs: ≥375 ppm
 (e.g., Messenger et al., 2003; Floss et al., 2006; Busemann et al., 2009)
 -variable in primitive meteorites: up to 220 ppm
 (e.g., Nguyen et al., 2008; Floss and Stadermann, 2009; Vollmer et al., 2009)
- fragile nature of presolar silicates: opportunity to investigate effects of secondary processing

What We Can Learn from Presolar Silicates

- how they formed
 - conditions for grain formation
 - chemical reactions in molecular clouds
 - stellar and galactic evolution
 - nucleosynthesis
- how they evolved
 - processing in interstellar medium (ISM), nebula, or on parent bodies (aqueous alteration, metamorphism)
 - provides information about conditions in these environments
 - terrestrial alteration

data from Presolar Grain Database (presolar.wustl.edu/~pgd)

Fe-rich Presolar Silicates

- Mg-rich silicates expected
 - equilibrium condensation theory: forsterite, enstatite (Lodders and Fegley, 1999; Ferrarotti and Gail, 2001)
 - astronomical observations: <10% Fe in crystalline silicates (Demyk et al., 2000); mg# >90 in amorphous grains (Min et al., 2007)
- origin of Fe enrichments seen in presolar silicates
 - primary signature vs secondary alteration?
- few Fe isotopic measurements: Acfer 094
 - two presolar silicates with non-solar ⁵⁴Fe/⁵⁶Fe (Mostefaoui & Hoppe, 2004; Vollmer et al., 2010)
 - grains with solar Fe: difficult measurements; large errors (Bose et al., 2010; Vollmer et al., 2010)

Graphite grains come in different vegetable types. Some of them are huge and provide a lot of material for detailed elemental and isotopic analysis.

10 µm

Morphological types of presolar graphites

The distribution of carbon isotopic ratios in graphite grains is different from those of mainstream and SN SiC grains, indicating distinct stellar sources.

Murchison graphite grains

The isotopic compositions of graphite grains depend on their density.

Low-density graphite grains show larger ¹⁵N excesses than high-density grains. The normal N isotopic ratios in many grains cannot be indigenous but indicate isotopic equilibration.

Low-density graphite grains show larger ¹⁸O excesses than high-density grains. The normal O isotopic ratios in many grains cannot be indigenous but indicate isotopic equilibration.

Low-density graphite grains resemble X grains also in their inferred ²⁶Al/²⁷Al ratios. There are only few measurements for high-density grains and grains with high ratios have been

Low-density graphite grains are characterized by ¹⁵N, ¹⁸O, and ²⁸Si excesses (some have ²⁹Si and ³⁰Si excesses), and high inferred ²⁶Al/²⁷Al ratios. Some also show evidence for the initial presence of short-lived ⁴¹Ca and ⁴⁴Ti and have ⁴⁹Ti excesses (possibly from the decay of shortlived ⁴⁹V). All these signatures indicate an origin in Type II SNe.

The most diagnostic isotopic signatures of high-density graphite grains are high ¹²C/¹³C ratios and large ³⁰Si excesses. They point to an origin in low-metallicity AGB stars.

Models for lowmetallicity stars give large ³⁰Si excesses, but the ${}^{12}C/{}^{13}C$ ratios of the models are too high for large ³⁰Si values.

High ¹²C/¹³C ratios imply high C/O ratios, conditions favoring the formation of graphite instead of SiC.

Evidence for an AGB star origin of high-density graphite grains comes from internal TiC grains that are highly enriched in the s-process elements Zr, Mo and Ru.