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We consider the propagation of a weak plane-wave classical coherent pulse through an ensemble

of absorbing atoms. This elementary problem offers an idealplayground to discuss causality,

atomic superposition state, various atomic relaxation processes, and exchange of quantum infor-

mation between light and matter. This very simple introductory presentation pays special attention

to the connection between time and frequency domains. Features such as slow light can be derived

in this basic framework.
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1. Introduction

The blackbody radiation is the most common expression of light in astrophysics. Classical
electrodynamics offers the usual framework to describe thermal radiation, but covers a much wider
range of electromagnetic phenomena. The scope of classical electrodynamics also spills over into
quantum physics. This specifically occurs in the semi-classical theory of light-atom interaction,
where fully quantum mechanical atoms interact with classical light. The analysis of emission and
absorption spectral lines, as observed in astrophysics, is based on such a description. Those spectral
lines represent the electromagnetic manifestation of atomic superposition states.

Whether thermal or not, the radiation observed in astrophysics is usually incoherent, with a
duration much larger than the inverse bandwidth. In the present paper wefocus on the opposite
situation of totally coherent pulses, whose duration equals the inverse spectral width1. Although
it is probably unlikely that such radiation could be observed in astrophysics, the simplicity and
richness of the corresponding physics make it worth considering.

We discuss the most elementary situation of a weak plane-wave coherent pulse propagating
through an absorbing ensemble of two-level atoms. All the atoms are assumedto be initially sitting
in their ground state. With this extremely simple system we explore such featuresas causality,
pulse area propagation, and slow light.

2. Causality and refraction index

Attenuation of light by an absorbing material is governed by the well known law of Beer Lam-
bert. According to this law, the power spectrum|Ain(ω)|2 of the incoming weak field undergoes an
exponential attenuation as a function of the propagation depthz:

|Aout(ω)|2 = |Ain(ω)|2exp(−α(ω)z) (2.1)

The names of August Beer (1825−1863) and Johann Heinrich Lambert (1728−1777) are attached
to this law, but its origin can be traced back to theEssai sur la gradation de la lumièrethat Pierre
Bouguer published in 1729. When the incoming pulse spectrum is much narrower than the absorp-
tion band, this law also applies to the field amplitude, which leads to:

Aout(ω) = Ain(ω)exp(−α(ω)z/2) (2.2)

Providedα(ω) does not significantly vary over the pulse spectrum, the pulse is only attenuated,
preserving its temporal shape as it propagates through the absorbing medium.

This is no longer true when the pulse spectrum is much broader than the absorption band. To
address the problem in the simplest way, let us first consider a small opticaldensity material. Then
Eq. 2.2 can be expanded as:

Aout(ω) = Ain(ω)−Ain(ω)α(ω)z/2 (2.3)

1to be specific, a black body coherent pulse, with a spectrum centered in the visible, would last for≈ 1 femtosecond.
Observing the continuous black body emission with an ultrafast detector would not help to discriminate the propagation
features we consider in this paper. Indeed, in standard conditions, those features can only be observed on a dark back-
ground, just after the extinction of a minimum-duration incoming pulse. A coherent pulse, with a duration given by the
inverse bandwidth of the emitted light, is the shortest conceivable emission limited to a given bandwidth.
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The first term on the right-hand side coincides with the incoming pulse. In the second one,Ain(ω)

is filtered by the absorption band profileα(ω), whose spectral width is denoted∆0. In the time
domain, this corresponds to a pedestal spreading over a time interval of order 1/∆0, much larger
than the pulse duration. Hence the pedestal startsbefore the arrival of the pulse. This clearly
violates causality and invalidates Eq. 2.2. We have incorrectly described theatomic response to
the radiation field. In the weak field limit, the atomic response is certainly linear. However, this
does not mean that the macroscopic polarization at timet is just proportional to the local field
at the same time. The atomic response is not instantaneous. Instead it keeps some memory of
interactions with the field at previous times. More precisely, the response attime t results from
the linear combination of all the elementary linear responses to the successive interactions with
the field at any time beforet. Following this intuitive approach, one can express the macroscopic
polarization as:

P(z, t) = ε0

∫ ∞

−∞
R(t − t ′)A(z, t ′)dt′ (2.4)

where the response functionR(t − t ′) just accounts for the evolution of the atomic system from the
interaction timet ′, up to the observation timet. Since the integration in Eq. 2.4 runs from−∞ to
+∞, the response function must satisfy the causality condition:

R(t − t ′) = θ(t − t ′)R(t − t ′), (2.5)

whereθ(t) stands for the unit step function. The finite width ofR(t) reflects the finite width
of the absorption band and the finite lifetime of the atomic superposition states. A∆0-bandwidth
means that this lifetime exceeds 1/∆0. By time-to-frequency Fourier transformation of Eq. 2.4, one
recovers the well known linear expression of the macroscopic polarization in terms of the electric
field.

P̃(z,ω) = ε0R̃(ω)Ã(z,ω), (2.6)

which leads us to identifỹR(ω) with the electric susceptibilityχ(ω). From the Fourier transform
of Eq. 2.5 one immediately derives the Kramers-Krönig relations of dispersion that connect the real
and imaginary parts ofχ(ω), i.e. the index of refraction and the absorption coefficient. This is the
expression of causality in the frequency domain. Specifically, the index ofrefraction is related to
the absorption coefficient by:

n(ω) = 1+
c

ω0

1
2π

∫ α(ω ′)

ω −ω ′
dt′ (2.7)

Then, Eq. 2.2 shall be changed accordingly into:

Aout(ω) = Ain(ω)exp(−α(ω)z/2+ i[n(ω)−1]z) . (2.8)

In the small optical density limit, the response field given by Eq. 2.3 shall be complemented by
iAin(ω)[n(ω)−1]z. One easily verifies that this additional contribution cancels the non-causal part
of the pedestal.

At the line centerω0, n(ω0)− 1 vanishes and one recovers Eq. 2.2. This result is appar-
ently puzzling. SinceA(ω0) represents nothing but the pulse area, i.e. the time integral of the
pulse envelope, Eq. 2.2 predicts that the pulse area vanishes at the absorbing medium output when
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Figure 1: Distortion of a broadband short pulse by a∆0-wide, absorption line. The pulse bandwidth is≈ 40
times larger than∆0. The pulse spectrum is centered on the line. From top to bottom: input intensity, output
field amplitude, output intensity. Output intensity and amplitude are scaled to the input. The field envelope
oscillations make the vanishing of the pulse area consistent with the efficient transmission of energy.
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Figure 2: transparency window: correlated variations ofα(ω) and n(ω); relative width of the transparency
window and the transmitted, slowed down, pulse.

α(ω)z >> 1. This seems to be contradictory with the fact that, if the pulse bandwidth is large
enough, all the electromagnetic energy should be transmitted without dissipation. As shown in
Fig. 1, the effect of the phase term in Eq. 2.8, far away from the absorption band, solves this appar-
ent contradiction [1, 2]. Indeed this term makes the field envelope oscillate,giving rise to opposite
sign contributions that make the vanishing of the pulse area consistent with theconservation of
energy2.

3. Slow light

The absorption bandwidth reflects both the finite lifetime of the atomic superposition states and
the width of the transition frequency distribution. The latter quantity, known asthe inhomogeneous

2The restriction to coherent pulses, enacted as a rule in the introduction, can be circumvented in certain conditions.
An incoherent emission can be considered as a train of contiguous and mutually independent sub-pulses whose duration
equals the inverse spectral width of the incoherent emission. In Ref. [2] the coherent properties of incoherent light are
detected by field cross-correlation of the transmitted light with a referencebeam derived from the same source. This
way one is able to discriminate the material response associated with each elementary sub-pulse.
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width, may result from the Doppler broadening caused by the atom translational motion. Let the
bandwidth be dominated by the width of the transition frequency distribution. Then aΓ-wide
transparency window may be burnt in this distribution atω0, providedΓ is larger than the inverse
lifetime of the atomic superposition states. To practically burn a spectral hole, one can transfer the
atoms to an auxilliary shelving state, over theΓ-wide interval. According to Eq. 2.7, the modified
absorption profile is reflected in the spectral variations of the index of refraction, as illustrated in
Fig. 2. A narrow-band light pulse, centered atω0 and narrower thanΓ, is exposed to a quasi-linear
variation of the index of refraction, since the second derivative ofn(ω) vanishes at the center of the
symmetric window. The corresponding group velocity is given by:

vg = c/(1+ωdn(ω)/dω) ∼= c/(1+α0c/Γ) (3.1)

where the absorption coefficientα0 represents the depth of the transparency window. A deep and
narrow transparency window can reduce the pulse velocity by orders of magnitude [3]. As the pulse
slows down, it undergoes a spatial compression. Ifvg is small enough, the pulse can be confined
entirely within the boundaries of the absorbing medium. Its spatial extension is then vg/c times
smaller within the material than in vacuum. Since the electromagnetic density of energy does not
vary as light enters the medium, one concludes that the energy carried by the pulse is reduced by
the samevg/c factor. This is quite surprising since the pulse is not absorbed, but only slowed down,
and recovers all its initial energy at the exit of the material. It can be shownthat the energy is stored
within the off-resonant atoms, located on the sides of the transparency window [3, 4]. Those atoms
are excited in a superposition state that adiabatically follows the light pulse, propagating as a spin
wave together with the pulse.

Further reduction of the group velocity hits against the difficulty of enlarging α0 and reduc-
ing Γ simultaneously. Indeedα0 is the larger as the atoms interact more strongly with the field,
but stronger interaction reduces the atomic superposition state lifetime, which enlarges the lower
boundary toΓ. Electromagnetically induced transparency (EIT) circumvents this issue bythe di-
rect two-photon excitation of a long lifetime superposition statein the ground levelof the optical
transition. This way, the width of the transparency window is no longer controlled by Γ. With
EIT, it was possible to slow light down to less than 20m/s [5]. The detailed description of this
sophisticated technique, involving intense electromagnetic fields and three-level atoms, does not
come within the scope of the present paper.

In the above discussion, light slowing down requires that the pulse spectrum fits within the
transparency window. The linear absorption processing of broadband pulses has been considered
recently in the context of quantum light storage [6, 7, 8]. Instead of burning a single hole within the
absorption profile, one carves a periodic comb of absorbing teeth as illustrated in Fig. 3. When the
absorbing tooth widthδ is much smaller than the 2π/T spectral period, all the incoming energy is
transmitted through the atomic frequency comb (AFC). However, all over thecomb spectrum, the
transmitted field undergoes a positive delayL/vg, whereL represents the absorbing material depth.
According to Eq. 3.1, the minimum group delay reads asτ0 = 〈α〉LT/4, where〈α〉 = α0δT/(2π)

stands for the average absorption coefficient over a spectral period. No energy can exit the medium
before timeT if τ0 >> T. Since the delay is not uniform over the incoming pulse spectrum, the
pulse is strongly distorted, being split into several components located at successive multiples of
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Figure 3: atomic frequency comb (AFC). A periodic comb of absorbing teeth gives rise to a periodic varia-
tion of n(ω). The resulting group delay L/vg is positive everywhere, with a minimum value at the middle of
each transparency interval. The incoming pulse spectrum covers several teeth.
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Figure 4: atomic frequency comb(AFC) and slow light. A short incomingpulse, with a spectral width
much larger than the2π/T period of the AFC, is delayed as it propagates through the AFC medium. We
performed the displayed simulation by settingτ0 = 〈α〉LT/4 = 5T. The input pulse is split into several
sub-pulses. Their overall envelope results from the stretching of the initial envelope.

T. Nevertheless, as shown in Fig. 4, the transmitted pulse envelope remains a smooth function that
results from the stretching of the input profile.

4. Conclusion

Hopefully, the reader will agree that such a simple problem as the propagation of a weak plane-
wave coherent pulse through an ensemble of two-level atoms can give rise to fascinating effects.
Features such as multiple pulse generation and slow light are closely related tothe combination
of causality and the finite lifetime of atomic superposition states. However all these effects are
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revealed only in the time domain and depend on the pulse coherence. One may wonder whether
such coherent pulses might be observed in astrophysics.

References

[1] Joshua E. Rothenberg, D. Grischkowsky, and A. C. Balant Phys. Rev. Lett.53 (1984) 552.

[2] M. A. Bouchene, A. Débarre, J.-C. Keller, J.-L. Le Gouët,P. Tchénio, J. Opt. Soc. Am.9 (1992)
281-89.

[3] R. Lauro, T. Chanelière, and J.-L. Le Gouët, Phys. Rev. A79 (2009) 063844.

[4] D. Grischkowsky, Phys. Rev. A7 (1973) 2096

[5] Lene Vestergaard Hau, S. E. Harris, Zachary Dutton, Cyrus H. Behroozi, Nature397 (1999) 594-598

[6] Hugues de Riedmatten, Mikael Afzelius, Matthias Staudt, Christoph Simon, Nicolas Gisin, Nature
456 (2008) 773-777.

[7] Mikael Afzelius, Christoph Simon, Hugues de Riedmatten, and Nicolas Gisin, Phys. Rev. A79 (2009)
052329.

[8] T. Chanelière, J. Ruggiero, M. Bonarota, M. Afzelius, J.-L. Le Gouët, New J. Phys.12 (2010) 023025.

7


