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Confinement and chiral symmetry breaking, one or
two critical points?
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We study the QCD phase diagram, in particular we study the critical points of the two main QCD

phase transitions, confinement and chiral symmetry breaking. Confinement drives chiral symme-

try breaking, and, due to the finite quark mass, at small density both transitions are a crossover,

while they are a first or second order phase transition in large density. We study the QCD phase

diagram with a quark potential model including both confinement and chiral symmetry. This for-

malism, in the Coulomb gauge hamiltonian formalism of QCD, is presently the only one able to

microscopically include both a quark-antiquark confining potential and a vacuum condensate of

quark-antiquark pairs. Our order parameters are the Polyakov loop and the quark mass gap. The

confining potential is extracted from the Lattice QCD data ofthe Bielefeld group. We scan the

QCD phase diagram for different quark masses, in order to address how the quark masses affect

the critical point location in the phase diagram.
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QCD critical points Pedro Bicudo

Figure 1: A sketch of the QCD Phase Diagram, according to the collaboration CBM at FAIR [1]. It is
usually assumed that the critical point for deconfinement coincides with the critical point for chiral symmetry
restoration.

1. Motivation

Our main motivation is to contribute to understand the QCD phase diagram, for finiteT and
µ , to be studied at LHC, RHIC and FAIR.

Using modern quark models for light quarks we now study chiral symmetry breaking, i. e.
quark mass generation, at finite T. In the last Bormio Meetingwe used the bottomonium and char-
monium as good prototypes to study finite T quark-antiquark potentials. In that case it was suffi-
cient to solve the Schrödinger equation with static latticeQCD potentials, sincemb,mc >> ΛQCD

andmb,mc >> Tcallowed us to neglect in the quark sector, temperature effects, spontaneous chiral
symmetry breaking, relativistic effects and coupled channels. However, to address light quarks at
finite temperatureT it is also necessary to include temperature, not only in the confining quark-
antiquark interaction, but also in the quark mass generation and in the quark propagator.

Thus the present work, not only addresses the QCD phase diagram, but it also constitutes the
first step to allow us in the future to,
- compute the spectrum of any hadron at finite T ,
- compute the interaction of any hadron-hadron system at finite T .

Here we address the finite temperature string tension, the quark mass gap for a finite current
quark mass and temperature, and the deconfinement and chiralrestoration crossovers. We conclude
on the separation of the critical point for for chiral symmetry restoration from the critical point for
deconfinement.

2. Fits for the finite T string tension from the Lattice QCD energy F1

At vanishing temperatureT = 0, the confinement, modelled by a string, is dominant at mod-
erate distances,

V(r) ≃
π

12r
+V0 + σ r . (2.1)
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Figure 2: Left: The Bielefeld feeF1 energy atT < Tc. Right: comparing the magnetization critical curve
with the string tensionσ/σ0, fitted from the long distance part ofF1, they are quite close.

At short distances we have the Luscher or Nambu-Gotto Coulomb due to the string vibration +
the OGE coulomb, however the Coulomb is not important for chiral symmetry breaking. At finite
temperature the string tensionσ(T) should also dominate chiral symmetry breaking, and thus one
of our crucial steps here is the fit of the string tensionσ(T) from the Lattice QCD data of the
Bielefeld Lattice QCD group, [2, 3, 4, 5, 6].

The Polyakov loop is a gluonic path, closed in the imaginary time t4 (proportional to the
inverse temperatureT−1) direction in QCD discretized in a periodic boundary euclidian Lattice. It
measures the free energyF of one or more static quarks,

P(0) = Ne−Fq/T , Pa(0)P̄ā(r) = Ne−Fqq̄(r)/T . (2.2)

If we consider a single solitary quark in the universe, in theconfining phase, his string will travel as
far as needed to connect the quark to an antiquark, resultingin an infinite energy F. Thus the 1 quark
Polyakov loopP is a frequently used order parameter for deconfinement. Withthe string tension
σ(T) extracted from theqq̄ pair of Polyakov loops we can also estimate the 1 quark Polyakov loop
P(0). At finite T, we use as thermodynamic potentials the free energyF1 and the internal energy
U1, computed in Lattice QCD with the Polyakov loop [2, 3, 4, 5, 6]. They are related to the static
potentialV(r) =− f dr with F1(r) =− f dr−SdTadequate for isothermic transformations. In Fig.
2 we extract the string tensionsσ(T) from the free energyF1(T) computed by the Bielefeld group,
and we also include string tensions previously computed by the Bielefeld group [7].

We also find an ansatz for the string tension curve, among the order parameter curves of other
physical systems related to confinement, i. e. in ferromagnetic materials, in the Ising model, in
superconductors either in the BCS model or in the Ginzburg-Landau model, or in string models,
to suggest ansatze for the string tension curve. We find that the order parameter curve that best
fits our string tension curve is the spontaneous magnetization of a ferromagnet [8], solution of the
algebraic equation,

M
Msat

= tanh

(

Tc

T
M

Msat

)

. (2.3)

In Fig. 2 we show the solution of Eq. 2.3 obtained with the fixedpoint expansion, and compare it
with the string tensions computed from lattice QCD data.
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Figure 3: Left: the mass gapm(0) solution of as a function of the quark current massm0, in units ofσ = 1.
Right: sketch of the effect ofm0 on the crossover versus phase transition of choral restoration at finiteT.

3. The mass gap equation with finiteT and finite current quark mass m0.

Now, the critical point occurs when the phase transition changes to a crossover, and the
crossover in QCD is produced by the finite current quark mass m0, since it affects the order param-
etersP or σ , and the mass gapm(0) or the quark condensate〈q̄q〉. The mass gap equation at the
ladder/rainbow truncation of Coulomb Gauge QCD in equal time reads,

m(p) = m0+
σ
p3

∫ ∞

0

dk
2π

1
√

k2 +m(k)2

{[

pk
(p−k)2+ µ2 −

pk
(p+k)2+ µ2

]

m(k)p

−

[

pk
(p−k)2 + µ2 +

pk
(p+k)2 + µ2 +

1
2

log
(p−k)2 + µ2

(p+k)2 + µ2

]

m(p)k

}

. (3.1)

The mass gap equation (3.1) for the running massm(p) is a non-linear integral equation with a
nasty cancellation of Infrared divergences [9, 10, 11]. We devise a new method with a rational
ansatz, and with relaxation, to get a maximum precision in the IR where the equation is nearly
almost unstable. The solutionm(p) is shown in Fig. 3 for a vanishing momentump = 0.

At finite T, one only has to change the string tension to the finite T string tensionσ(T) [12],
and also to replace an integral inω by a sum in Matsubara Frequencies. Both are equivalent to
a reduction in the string tension,σ → σ ∗ and thus all we have to do is to solve the mass gap
equation in units ofσ ∗ . The results are depicted in Fig. 3. Thus at vanishingm0 we have a chiral
symmetry phase transition, and at finitem0 we have a crossover, that gets weaker and weaker when
m0 increases. This is also sketched in Fig. 3.

4. Chiral symmetry and confinement crossovers with a finite current quark mass

In what concerns confinement, the linear confining quark-antiquark potential saturates when
the string breaks at the threshold for the creation of a quark-antiquark pair. Thus the free energy
F(0) of a single static quark is not infinite, but is the energy of the string saturation, of the order of
the mass of a meson i. e. of 2m0. For the Polyakov loop we get,

P(0) ≃ Ne−2m0/T . (4.1)
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Figure 4: Sketches of the saturation of confinement (left), and of the corresponding crossover in the order
parameterP polyakov loop (righ).

Thus at infinitem0 we have a confining phase transition, while at finitem0 we have a crossover,
that gets weaker and weaker whenm0 decreases. This is sketched in Fig. 4.

Since the finite current quark mass affects in opposite ways the crossover for confinement and
the one for chiral symmetry, we conjecture that at finiteT andµ there are not only one but two
critical points (a point where a crossover separates from a phase transition). Since for the lightu
andd quarks the current massm0 is small, we expect the crossover for chiral symmetry restoration
critical to be closer to theµ = 0 vertical axis, and the crossover for deconfinement to go deeper
into the finiteµ region of the critical curve in the QCD phase diagram depicted in Fig. 1.
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