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We discuss an effective chiral SU(3) model that includes hadronic as well as quark degrees of

freedom. Whereas the expectation values of the scalar mesonic fields correspond to the order

parameter of chiral symmetry restoration a field representing the Polyakov loop describes the

deconfinement process. Excluded volume effects for the hadrons are taken into account. We

present numerical results for zero chemical potential. Comparisons to lattice results are shown.
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1. Hadronic Model

There are a number of effective hadronic flavor-SU(3) models that describe matter properties
around the nuclear ground state quite well (e.g. [1] and references therein). Various extended quark
model approaches have been developed in the recent years for the study of the high temperature or
density regime and the deconfinement phase transition [2, 3]. To investigatethe chiral and decon-
finement phase transitions, where hadrons and quarks are involved, and in order to have a coherent
equation of state that covers the whole range of chemical potentials and temperatures relevant for
ultrarelativistic heavy-ion collisions a combined hadron-quark model can serve as a very useful
approach to this problem. In the following we outline such a hadron-quark formalism.

To ensure that the model has a reasonable behavior at low densities and low temperatures
we adopt a well-tested extended flavor SU(3)σ − ω model as basis for the description of the
hadronic system. As hadronic degrees of freedom we include the lowestbaryonic and mesonic
SU(3) multiplets.

The Lagrange density of our extended non-linearσ −ω model reads:

L = LKin +LInt +LSel f+LSB, (1.1)

with the kinetic energy termLKin. LSel f and LSB (assuming, for simplicity, isospin-symmetric
matter) are given by

LSel f = −
1
2
(m2

ωω2 ++m2
φ φ2)−g4

(
ω4 +

φ4

4
+3ω2φ2 +

4ω3φ
√

2
+

2ωφ3
√

2

)

+
1
2

k0(σ2 +ζ 2)−k1(σ2 +ζ 2)2−k2

(
σ4

2
+ζ 4

)
−k3σ2ζ −k4 ln

σ2ζ
σ2

0ζ0
, (1.2)

LSB= −m2
π fπσ −

(√
2m2

k fk−
1
√

2
m2

π fπ

)
ζ , (1.3)

whereω andφ are the zeroth components of the isoscalar non-strange and strange vector fields,
respectively.σ andζ are the corresponding scalar fields.LSel f includes mass terms and quartic
self-interactions of the vector mesons, as well as the self-interactions of the scalar mesons that
induce the spontaneous breaking of chiral symmetry. The explicit chiral-symmetry breaking is
implemented through the termLSB (for extended details on the full Lagrangian see [1]).

The interactions between baryons and the scalar and vector mesons are linear and read

LBM = −∑
i

ψ i

(
giσ σ +giζ ζ

)
ψi , LBV = −∑

i

ψ i

(
giωγ0ω +giφ γ0φ

)
ψi , (1.4)

The indexi sums over the baryon octet. Vacuum and in-medium masses of the baryons are gener-
ated via their couplings to the scalar condensates.

For the baryon-vector couplingsgiω andgiφ pure f -type coupling is assumed as discussed in
[1], giω = (ni

q−ni
q̄)g

V
8 , giφ =−(ni

s−ni
s̄)
√

2gV
8 , wheregV

8 denotes the vector coupling of the baryon
octet andni the number of constituent quarks of speciesi in a given hadron. The relative couplings
are in accordance with additive quark model constraints.
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The parameters of the purely hadronic model are fixed by symmetry relations, hadronic vac-
uum observables and nuclear matter saturation properties (see [1]). Inaddition, the model also
provides a satisfactory description of realistic finite-size and/or isospin asymmetric systems like
nuclei and neutron stars [4, 5].

2. Implementing Quarks

For a realistic description of the system at high temperatures and densities weintroduce quark
fields into our model following the general approach outlined in [2, 3].

The quarks couple to the mean fields of the model. As order parameter for thedeconfinement
transition we introduce an effective Polyakov loop fieldΦ and its conjugateΦ∗ with a potential for
the field reading [3]:

U = −
1
2

a(T)ΦΦ∗ +b(T)ln[1−6ΦΦ∗ +4(Φ3Φ∗3)−3(ΦΦ∗)2] (2.1)

wherea(T) = a0T4 +a1T0T3 +a2T2
0 T2, b(T) = b3T3

0 T. The parameters are fitted to lattice QCD
results at zero chemical potential.

The Polyakov loop couples to the quarks via their partition functions:

Ωq = −T ∑
i∈Q

γi

(2π)3

∫
d3k ln

(
1+Φexp

E∗
i −µi

T

)
(2.2)

and

Ωq = −T ∑
i∈Q

γi

(2π)3

∫
d3k ln

(
1+Φ∗exp

E∗
i + µi

T

)
(2.3)

Quark contributions in the confined phase withΦ = 0 are thus suppressed. In order to ensure that
hadronic degrees of freedom vanish at high temperatures we include a finite volume correctionv
for the hadrons (v = 1fm3) extending the thermodynamically consistent approach discussed in e.g.
[6]. Thus we get

vQuark = 0 , vBaryon= v , vMeson= v/8 (2.4)

assuming, for simplicity, a meson radius of half the size of the effective baryon radius. At this
stage we do not include more subtle effects in the description of the excludedvolume effects like
possible Lorentz contractions or temperature-dependent effects [7].An alternative approach to
suppress hadrons at high temperatures and densities by generating a mass shift for the hadronic
particles at non-zero values ofΦ is discussed in ref. [8].

Using a modified chemical potential̃µi for particle i, µ̃i = µi − vi P , whereP is the total
pressure, and by correcting all energy, particle, and entropy densities (ẽi , ρ̃i ands̃i) by the volume
exclusion factor:

f =
V ′

V
= (1+∑

i

viρi)
−1 (2.5)

one obtains a consistent set of equations.
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Figure 1: Scalar condensate and Polyakov loop as function of temperature compared to lattice results [10].
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Figure 2: Interaction measure as function of temperature compared tolattice results using different time
slices and effective actions[10].

3. Results

Solving for the fields by extremizing the grand canonical potential in mean-field approxima-
tion including thermal mesons we determine particle densities and thermodynamicalquantities as
function of temperature and chemical potential [9]. The plots show results for vanishing chemical
potential. Finite-density results will be presented in forthcoming publications. Fig. 1 shows the
temperature dependence of the scalar condensate and the Polyakov loop, representing the chiral
restoration and deconfinement transitions. The critical temperature in the model is Tc = 175MeV,
defined as maximum in the change of the scalar condensate during the cross-over phase transi-
tion. The curves are in qualitative agreement with lattice gauge results also shown in the plot [10]
Through the effective potential for the Polyakov loop also the gluonic contributions to energy den-
sity and pressure are included. In Fig. 2 the so-called interaction measureis plotted, defined as
deviation of the thermodynamical quantities from an ideal gas behavior(ε −3p)/T4. The model
shows the same behavior as the lattice results, with a peak in the interaction measure closely above
Tc. The resulting hadronic and quark densities are plotted in Fig. 3. Around the “critical” Tc a
mixture of hadrons and quarks can be observed, which is quite realistic given the smooth behavior
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Figure 3: Particle number densities overT3 for different particle species as function ofT. The solid line
shows the total number density of quarks and antiquarks. Thedotted line refers to the total meson density
and the dashed line to the number density of baryons and antibaryons.

of the phase transition and the still quite low value of the Polyakov loop field in thisregime as also
observed on the lattice. At higher temperatures the system is dominated by quarks very fast.

We have developed a unified hadron-quark model and studied its thermodynamic properties
at zero density. The comparison with lattice results shows reasonable agreement. Work on the
model calculations for finite chemical potential and the implementation of the equation of state in
hydrodynamic simulations of heavy-ion collisions are in progress.
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