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Phase Coexistence and Phase Transitions in Small Systems L. G. Moretto

1. Introduction

Hadron properties and their mass spectrum have been derived in the bootstrap model (Hage-
dorn model) [1, 2] and the bag model [3]. This spectrum is rather poorly known experimentally,
but it has suggested an exponential form which the theoretical spectra from both models repro-
duce, exactly in the bag model, in leading order in the bootstrap model. Given such an exponential
spectrum, one should easily derive the associated thermodynamics.

Such exponential systems are thermostats and are well known in standard thermodynamics.
Such are, for instance, any two phase systems in coexistence at fixed pressure, like a mixture of
liquid water and ice, as seen in Fig. 1, or liquid water and its saturated vapor.Erroneously, the
partition function calculated with this spectrum seems to lead to the expectation thatsuch a system
can exist over a range of temperatures, with an upper bound called the limitingtemperatureTH :

Z(T ) =
∫

dE ρ(E) exp

(

−

E
T

)

=
T TH

TH −T
(1.1)

whenρ(E) = exp

(

+
E
TH

)

.

In contrast to the above conclusion, we have shown [4, 5] that the correct result implies that
such exponential systems are characterized by one and only one temperature TH , and confer the
same temperatureTH to any other “system” coupled to it. Thus the Hagedorn thermostat cannot
exist at any temperature different thanTH any more than a water-ice system at atmospheric pressure
can exist at any temperature other than 0◦C.

It is immediately shown [4, 5] that such a system, when allowed to equilibrate in temperature
and in particle number with a gas of particles of massm, leads to a particle concentration which is
volume independent:

N(m)

V
= g(m)

(

mTH

2π

)
3
2

exp

(

−

m
TH

)

, (1.2)

Figure 1: Liquid water with ice in equilibrium at atmospheric pressure is an example of a thermostat with
an exponential spectrum and will always have the same temperature no matter how much energy is put into
it.
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whereg(m) is the degeneracy of the particle. In other words, the gas is a saturated vapor and the
thermostat is not only an infinite heat/energy reservoir, but also an infinite particle reservoir.

2. The bag model

The bag model, in its simple form (no conserved charges), can be easily visualized. There
are two vacua: 1) a lower energy vacuum, the hadronic vacuum; 2) a higher energy vacuum, or
partonic vacuum. A bubble, or bag, of partonic vacuum of volume V can beopened at a cost:

E = pV = BV , (2.1)

whereB is called the bag constant and is the constant pressure exerted by the hadronic vacuum on
the bag.

The bag pressure,B, can be counteracted by the pressure of the partonic black body:

p =
gπ2

90
T 4

H = B (2.2)

This can occur only at one temperatureTH =
(

B 90
gπ2

)
1
4
.

The enthalpy density of the bag is:

H =
gπ2

30
T 4

H +B , (2.3)

and the entropy is:

S =
H
TH

≡

m
TH

or ρ(E) = expS = exp

(

m
TH

)

. (2.4)

This shows that the bag is characterized by an exponential spectrum.
The analogy with a bubble of vapor forming in a liquid at a hydrostatic pressure P = B is

complete and compelling. There is a temperature,TB, at which the saturated vapor pressure is
p(TB) = B. At any temperatureT < TB, no bubble can exist in the liquid. AtT = TB, a bubble can
finally form. This bubble can be of an arbitrary size, as the liquid evaporates isothermally into the
bubble. In fact, the system exists between two extreme regimes: 1) all liquid; 2) all saturated vapor.
Accordingly, the “energy density” interpolates linearly between the two corresponding limits.

In conclusion, we have described the bubble formation (boiling) in a liquid atfixed pressure.
We can translate this picture into the case of a bag according to a simple dictionary:

liquid → hadronic vacuum
interior of vapor bubble→ partonic vacuum

saturated vapor → partonic blackbody radiation

In order to complete the picture, we can add that a liquid cannot - ever - generate a bubble at
T < TB. However, a black body phonon spectrum can exist at any temperatureT < TB. Similarly,
the hadronic vacuum cannot support a bag at temperatureT < TH , but can have a black-body
spectrum of its own, like a saturated gas of pions and any other particle with anon-exponential
spectrum. See Fig. 2.
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(a) T < TH : Non saturated
gas ofπ etc.

(b) T = TH : Gas of bags and
saturated gas ofπ etc.

(c) T = TH : One big bag

Figure 2: Schematics of a Hagedorn system at different temperatures.Notice how belowTH there are no
bags, whereas any system with bag(s) present is atT = TH .

Figure 3: As a function of energy, the temperature of the Hagedorn system will first increase and then reach
the limiting temperature ofTH .

What happens in the bag model when we heat the hadronic vacuum at various temperatures?
At T < TH , the hadronic vacuum is permeated with a black-body radiation made up of allexisting
particles/antiparticles, such as pions, with a non-exponential intrinsic spectrum. The energy density
is:

E(T ) =
1
V ∑N(mi)

(

mi +
3
2

T

)

= ∑
(

miT
2π

)
3
2
(

mi +
3
2

T

)

exp
(

−

mi

T

)

. (2.5)

As T increases, the energy density increases until the temperature hitsTH . At this time the bag(s)
appears, intermingled with the saturated vapor. The energy density at this temperature can go from
that of the saturated vapor to that of the bag. The latter corresponds to allthe accessible space taken
up by the partonic vacuum and the partonic blackbody. No temperature higher thanTH is possible
unless an external pressure is added to the bag pressure, either dynamically or through a formal
constraint. See Figs. 2 and 3.

3. Resonance gas, or a gas of bags

No bag can form atT < TH . At T = TH , however, bags can form. Two related questions arise:

1) What is the mass distribution of the bags?

2) Do these bags contribute in any way to the pressure (equation of state) of the system?
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3.1 Mass distribution of bags

The exponential spectrum tells us that bags are thermodynamically indifferent to coalescence
or fragmentation [4, 5]. However, if one incorporates the translational degrees of freedom of the
bags, one obtains the concentration of bags of massm as:

N(m)

V
= g(m)

(

mTH

2π

)
3
2

exp

(

−

m
TH

)

=

(

mTH

2π

)
3
2

(3.1)

wheng(m) = exp

(

m
TH

)

.

The most probable bag is the bag with the largest mass possible, which ism → ∞. Given the
finite size of the bag proportional to m, the most probable configuration is a single infinite bag
representing the liquid. Notice that bags, whatever their mass, will carry anaverage kinetic energy
of 3

2TH . For more details, see Ref. [4] and Ref. [5].
While, in principle, the “little” bags of the distribution peaking atm → ∞ can be considered

part of the saturated vapor, the above description, like in any liquid-vapor system, implies the
essential separation of vapor and liquid. The vapor is always atT = TH and the pressure isinde-
pendent of volume. These considerations drastically limit the role of a “resonance” or “bag” gas in
the description of the thermodynamic equilibrium of the system [4, 5].

4. The shape of the bag and its surface energy

In the standard bag model, only volume terms are present, and there is no surface energy.
Therefore, a new question arises: “What is the shape of a bag?” Or better, “How many shapes can
a bag of finite volume assume?”

In lattice models, it is possible to enumerate such number of ways. The most probable way
is typically highly dendritic spaghetti-like. The example of clusters in a lattice gas isilluminating.
The presence of a surface energy forT < Tc forces the most probable shape to be compact. Above
Tc, the surface energy disappears and the shape is dendritic. Fig. 4 shows how the probability of
finding a cluster with a given surface changes when the temperature is altered. This is vividly
manifested in the dimensionality change as one crossesTc, as shown in Fig. 5. In the absence of
surface energy, the fluctuations of the bag shape are already those ofa supercritical system at the
unique stable temperatureTH . In other words, there is no criticality.

Figure 4: The shape of the clusters changes as a function of temperature, controlled by the Boltzmann factor
for the surface energy.
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Figure 5: Surface dimensionality (S ∝ Aσ ) of 3-dimensional lattice clusters with surface as a function of
temperature.

5. Effects of surface energy

What are the consequences of a possible surface energy? First of all, it would make the
situation of a gas of bags even more precarious, since there would be an ever greater tendency
to maximize the drop size and to minimize the surface. Even more interesting is the effect of the
surface on the bag temperature. The surface translates into an additionalpressure on the bag. The
enthalpy of the bag becomes:

E V = H = [ f (T )+B]V + csV 2/3. (5.1)

The pressure is:

p =
1
3

f (T )−

(

B+
2
3

csV−1/3
)

= 0 at equilibrium, (5.2)

for which:

T = f−1
[

3

(

B+
2
3

csV−1/3
)]

. (5.3)

In Fig. 6 we show the dependence of the bag size on the temperature, energy, and heat capacity.
Notice that the temperature of a bag increases and tends to infinity with decreasing bag size.

The introduction of a temperature dependent surface energy is also easily implemented. If:

cs = c0
s

(

1−
T
Tc

)

, (5.4)

(a) Temperature (b) Energy (c) Heat Capacity

Figure 6: Effects of bags having a surface energy on various thermodynamic properties.
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Figure 7: Effects of the surface energy varying with temperature. Notice how the temperature stays finite
with this change when previously it diverges.

(a) Stability of a gas of bags (b) The decay of a bag with surface

Figure 8: Schematic picture of the effects of a bag having surface energy.

we have for the stability condition:

σ T 4 = 3

[

B+
2
3

c0
s

(

1−
T
Tc

)

V−2/3
]

. (5.5)

Compared to the previous situation, the bag temperature goes toTc rather than infinity as the bag
becomes small, as seen in Fig. 7. It also preserves the trend that the large bag sizes go to a temper-
ature ofTH .

This temperature dependence of the bag leads to two interesting conclusions:
1) A gas of bags of different sizes, and thusof different temperatures, is out of equilibrium.

The system will tend to make one single bag of maximum size and minimum surface.
2) If a bag decays, its temperature, as manifested by the decay products such as pions, will

progressively increase as the bag evaporates.
These conclusions are shown in Fig. 8.
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