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1. Introduction

There are several complementing each other QCD extensions of the original Crewther relation,
which was derived in [1] from the axial-vector-vector (AVV) triangle amplitude in the quark-parton
model. This fundamental relation has the following form:

D ·CB jp = 1 . (1.1)

The first entry in the l.h.s of Eq.(1.1) is defined as the quark-parton model expression for the non-
singlet part of the e+e− Adler function, DNS

A ,

DNS
A (as) =

(

Nc ∑
f

Q2
f

)

·D(as) (1.2)

while the second term in the l.h.s. is the quark-parton model limit of the non-singlet coefficient
function CB jp of the Bjorken sum rule of the polarized lepton-hadron deep-inelastic scattering
(DIS)

SB jp(as) =

(
1
6

gA

gV

)

·CB jp(as). (1.3)

CB jp also enters into the non-singlet part of the Ellis-Jaffe sum rule of the polarized lepton-hadron
DIS.

The derivation of Eq.(1.1) is essentially based on the concept of the conformal symmetry
(CS). It is known that CS , which is valid in the quark-parton model limit, is the symmetry under
the following transformations of coordinates (see e.g. the reviews [2], [3]) :

1. scale transformation or dilatation x
′µ = ρxµ with 1 parameter ρ>0,

2. special conformal transformations x
′µ =

xµ +β µx2

1+2βx+β 2x2 with 4 parameters β µ and

3. translations x
′µ = xµ +α µ with 4 parameters α µ ,

4. homogeneous Lorentz transformations x
′µ = Λµ

ν xν that also contain 4 parameters.

Note that in the case of perturbative quenched QED, namely, in the approximation when QED
diagrams containing internal photon vacuum polarization contributions are neglected, the original
Crewther relation of Eq.(1.1) is also valid [4]. Other important quantum field theory studies based
on the concept of the CS are described, e.g., in [3], [5], [6].

However, it is known that conformal symmetry is broken by the normalization of the coupling
constant in the renormalized massless quantum field models (for details see, e.g., [7]). One of
the basis results of this procedure is nonzero normalization group β–function that can be defined
within perturbation theory. The factor β (as)/as appears as the result of renormalization of the trace
of the energy-momentum tensor [8, 1, 9, 10, 11, 12] and generates the conformal anomaly. Here
as = αs/π , and αs is the QCD coupling.

The original Crewther relation of Eq.(1.1) can be generalized to the QCD case in the following
way:

D(as(Q
2)) ·CB jp(as(Q

2)) = 1+∆csb(as(Q
2)), (1.4)
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where Q2 is the Euclidean transfered momentum and ∆csb(as(Q2)) is the conformal-symmetry
breaking (CSB) term.

Three forms for the QCD generalizations of the Crewther relations are known at present.
Within the first generalization the additional correction to the “Crewther unity” in the MS-scheme
reads

∆csb(as) =

(
β (as)

as

)

P(as) =

(
β (as)

as

)

∑
m≥1

Kmam
s . (1.5)

This expression was discovered in [13], where the analytical expressions of two terms Ki with i ≤ 2
was fixed. The work [13] was based on careful inspection of the SU(Nc) group structure of the
available (to the moment) perturbative approximations for the functions D(as) and CB jp(as) and of
the 2-loop expression for the QCD β -function. The NLO corrections to the D-function were known
from the calculations performed both analytically [14] and numerically [15] (the analytical results
were confirmed in [16]), while the analytical N2LO perturbative corrections were evaluated in [17],
[18] and confirmed later on in [19] with the help of a different theoretical technique. Analogous
NLO corrections to CB jp calculated in [20] were confirmed later on in [21]. The corresponding
N2LO corrections were evaluated in [22].

The validity of the expression (1.5) in all orders of perturbation theory was explored in the
momentum space [23] (for some details see [24]) and proved rigorously in the coordinate space
[25] (for additional discussions see [3]). The explicit expression for the N3LO term K3 in Eq.(1.5)
was obtained recently [26]. It was found as the result of multiplication of SU(Nc) group expression
for the O(a4

s ) corrections to the D(as)
1 and CB jp(as) functions the analytically calculated in [26]

with taking into account the 3-loop analytical approximation of the QCD β -function, originally
evaluated in [28] and confirmed later on in [29].

In the second generalization of the Crewther relation formulated in [30] at N2LO, the CSB-
term ∆csb(as(Q2)) in Eq.(1.4) is absorbed in the scale Q∗2

D of the effective charge of the D-function
âB jp(Q2) = αe f f

s (Q2)/π by using the BLM scale-fixing procedure [31] extended firstly to the N2LO
in [32]. As the result, the second generalized form of the Crewther relation takes the following
N2LO form:

(

1+ âD(Q∗2
D )

)(

1− âB jp(Q
2)

)

= 1 (1.6)

where âD(Q2) and âB jp(Q2) are the effective charges of the D(as(Q2)) and CB jp(Q2) functions.
The concept of the effective charges was introduced in the process of creation of the effective
charges approach developed in [33], [34], [35].

However, the all-order proof of the second generalization of the Crewther relation of Eq.(1.6)
is absent. In view of this the analysis of [26], which obviously demonstrated, that Eq.(1.6) is also
satisfied at N3LO, can be considered as an important step of the verification of the second form of
the generalization of the Crewther relation in high orders.

It is also possible to use the N2LO variant of the BLM prescription [32] to absorb the N2LO
approximation of the CSB-term ∆csb(as(Q2)) in Eq.(1.4) into the BLM scale of the effective charge

1In the case of Nc=3 numbers of colours, this correction is known from analytical calculations of [27].
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âB jp(Q2) [36] and to obtain N2LO variant of the results of Ref.[30] in the following form:
(

1+ âD(Q2)

)(

1− âB jp(Q
∗2
B jp)

)

= 1 . (1.7)

The studies, analogous to those in [26], should demonstrate the N3LO validity of this expression
for the second generalization of the Crewther relation.

Within the third variant of the generalized Crewther relation, proposed at N2LO in [37] and
considered in detail at the N3LO in [38], the CSB-term in Eq.(1.4) is expressed through the follow-
ing double expansion:

∆csb(as) = ∑
n≥1

(
β (as)

as

)n

Pn(as) = ∑
n≥1

∑
r≥1

(
β (as)

as

)n

P(r)
n ar

s (1.8)

= ∑
n≥1

∑
r≥1

(
β (as)

as

)n

P(r)
n [k,m]Ck

FCm
A ar

s, (1.9)

where the first expansion parameter is the function (β (as)/as) and the second expansion param-
eter is the coupling as and CF and CA are the quadratic Casimir operators of SU(Nc) group. The
indices k,m and r in Eq.(1.9) are related as k+m = r and the coefficients P(r)

n [k,m] contain ra-
tional numbers and the odd ζ -functions. It should be stressed that the coefficients of Pn(as) in
Eq.(1.8) do not depend on nf which enter in the coefficients Km of the first form of the generalized
Crewther relation (1.5). However, contrary to the first generalization of the Crewther relation, the
validity of this third generalization of the Crewther relation [38] is not yet proved to all orders of
perturbation theory. Another interesting problem is related to the question whether special features
of the third extension of the Crewther relation (1.8) and Eq.(1.9), namely, the nf independence of
its coefficients, can be effectively used in practise. To analyze this question in more detail, we
supplement the discussions of [38] by extra considerations of the relations between the coefficients
in the polynomials Pn(as) in Eq.(1.8) and the ones in D(as), CB jp(as) and β (as) functions. The
β -expansion formalism [39] will be applied to this task and the results will be studied in detail.

2. Applications of β -expansion formalism

Consider perturbative expansion of the normalized flavour non-singlet part of the Adler func-
tion D from Eq.(1.2) and the normalized CB jp function from Eq.(1.3), namely,

D(as) = 1+ ∑
n=1

dn an
s ; (2.1)

CB jp(as) = 1+ ∑
l=1

cl al
s . (2.2)

The QCD coupling constant as obey the renormalization group equation with the QCD β -function
which we will define as

µ2 d
dµ2 as = β (as) = −a2

s

(
β0 +β1as +β2a2

s + . . .
)
. (2.3)

Within the β -expansion formalism of Ref. [39], instead of commonly used representation
of the coefficients of perturbative expansions for the renormalization-group invariant quantities in

4
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powers of TFnf and the colour group factors, one should consider their expansions in powers of the
β0, β1, β2 . . . of the β -function. For the quantities defined by the Eqs.(2.1) and (2.2) the coefficients
of this expansion approach are dn[n0,n1, . . .], cl [n0,n1, . . .]. Their first argument corresponds to the
term with n0 powers of β0, β n0

0 , the second one – n1 powers of β1, β n1
1 , and so on. The elements

dn[0,0, . . . ,0], cl [0,0, . . . ,0] represent “genuine” corrections with powers ni = 0 of all coefficients
βi. The latter elements coincide with expressions for the coefficients dn, cl in the imaginary case
of the nullified QCD β–function in all orders of perturbation theory is considered. This case corre-
sponds to restoration of CS of some quantum field model and will be considered here as a technical
trick. If all arguments ni after index m of the elements dn[. . . ,m,0, . . . ,0] (cl [. . . ,m,0, . . . ,0]) are
equal to zero, then, for the sake of a simplified notation, we omit these arguments and write these
elements as dn[. . . ,m]. For the clarification of the β -expanded view of the coefficients in pertur-
bation series for physical quantities we consider the corresponding representations of the several
terms of Eq.(2.1), namely,

d2 = β0 d2[1]+d2[0] , (2.4)
d3 = β 2

0 d3[2]+β1 d3[0,1]+β0 d3[1]+d3[0] , (2.5)
d4 = β 3

0 d4[3]+β1 β0 d4[1,1]+β2 d4[0,0,1]+β 2
0 d4[2]+β1 d4[0,1]+β0 d4[1]+d4[0] , (2.6)

dn = β n−1
0 dn[n−1]+ . . . (2.7)

The same ordering in the β -function coefficients can be applied to the coefficients c l . The expres-
sions like Eq.(2.4–2.7) are unique. The first of them, Eq.(2.4), is the basis of the standard BLM
prescription [31].

The coefficients dn[n− 1] are identical to the terms generated by the renormalon chain in-
sertions and can be obtained from the results of Ref.[13]. The clarification of the physical and
mathematical origin of other elements is a separate and not straightforward task. The problem
of getting diagrammatic representation for different contributions into the β -expanded coefficients
was considered in [39]. Further on in this Section we specify how to obtain β -expanded results at
the level of order a3

s -corrections.
Together with Eq.(2.4–2.7), Eq.(1.8) gives the possibility to express the sum of the elements

of n–loop β -expanded coefficients through the ones which result from (n−1)–loop calculations.
We will use the property, that Eq.(1.1) is satisfied in the CS limit of QCD, namely, in the case

when the β - function has identically zero coefficients βi = 0 for i ≥ 0. In this model, the Crewther
relation (1.1) can be rewritten as

D0 ·C
B jp
0 = 1, (2.8)

where the expansions for the functions D0 and CB jp
0 , analogous to the ones of Eq.(2.1), Eq.(2.2),

will contain the coefficients of genuine content only, namely, dn (cn) ≡ dn[0] (cn[0]).
Equation (2.8) provides evident relation between the genuine elements in any loops, namely,

cn[0]+dn[0]+
n−1

∑
l=1

dl [0]cn−l [0] = 0. (2.9)

In particular, they express the yet unknown genuine parts of the 5-loop terms d4,c4, through the
4-loop results already known from the analysis in [39]:

c4[0]+d4[0] = 2d1d3[0]−3d2
1 d2[0]+ (d2[0])2 +d4

1 . (2.10)
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This equation contains contributions proportional to CF and CA. Note that to check the perturba-
tively quenched QED approximation for d4 [27], available from [40], it was suggested in [41] to
use the relation that arises from the projection of the relation (2.10) onto the maximum power of
CF, namely, CF

4.
The β–expanded form for the d3-term was obtained in [39] by means of a careful consideration

of the analytical O(a3
s ) expression for the Adler function D(as,nf,ng̃) with the ng̃ MSSM gluino

multiplets, obtained in [19] 2. The element d3[2], which is proportional to the maximum power
β 2

0 in (2.5), can be fixed in a straightforward way. Then one should separate the contributions
β1 d3[0,1] and β0 d3[1] to the d3-term. They both are linear in the number of quark flavours nf.
Their separation is possible if one uses additional degrees of freedom – the gluino contributions
mentioned above and labelled here by their ng̃ multiplet number. In this way, one can get the
explicit form for the functions nf = nf(β0,β1) and ng̃ = ng̃(β0,β1). They can be obtained after
taking into account the gluino contributions to the first two coefficients of the QCD β -functions
known from the two-loop calculations performed in [44]. Finally, one arrives at the expressions for
the coefficients in Eqs.(2.4–2.5) presented in [38],

d1 =
3
4CF; d2[1] =

(
33
8 −3ζ3

)

CF; d2[0] = −
3
32C2

F +
1

16CFCA; (2.11)

d3[2] =

(
151

6 −19ζ3

)

CF

d3[1] =

(

−
27
8

−
39
4

ζ3 +15ζ5

)

C2
F −

(
9

64
−5ζ3 +

5
2

ζ5

)

CFCA; (2.12)

d3[0,1] =

(
101
16 −6ζ3

)

CF; d3[0] = −
69
128C3

F +
71
64C2

FCA +

(
523
768 −

27
8 ζ3

)

CFC2
A . (2.13)

which differ from the ones, originally obtained in Ref. [39], by the renormalization factor only.
Let us emphasize that gluinos are used here as a pure technical device to reconstruct the β -function
expansion of the perturbative coefficients.

Using the relation (2.9) for n = 2 and n = 3 and the already fixed d2[0] and d3[0]-terms we get
the expression for the c2[0] and c3[0] coefficients. Their knowledge allowed us to fix other elements
in the c2[. . .] and c3[. . .] terms [38], without attracting additional gluino degrees of freedom. The
results obtained in [38] read:

c1 = −
3
4CF; c2[1] = −

3
2CF; c2[0] =

21
32C2

F −
1
16CFCA; (2.14)

c3[2] = −
115
24 CF; c3[1] =

(
83
24 −ζ3

)

C2
F +

(
215
192 −6ζ3 +

5
2ζ5

)

CFCA; (2.15)

c3[0,1] =

(

−
59
16

+3ζ3

)

CF; c3[0] = −
3

128
C3

F −
65
64

C2
FCA −

(
523
768

−
27
8

ζ3

)

CFC2
A. (2.16)

Note that the approximations for the coefficients of the Adler function and of the Bjorken polarized
sum rule, similar to those of Eqs.(2.4–2.5) but with the terms proportional to the powers of β0

2The 3-loop contribution of light gluinos coincide with the numerical result in [42], while at the 4-loop analytical
result for gluino contribution, evaluated in [19], was confirmed in [43].
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only, were studied in [45]. These expressions from Ref.[45] can be compared with the results of
Eqs.(2.11-2.16).

Consider now one of the applications of the β -expansion formalism [39]. Substituting the
β -expanded expressions for di and ci into the general relations of Eq.(1.8) we found the following
identities [38]:

P1(as) = as

{

P(1)
1 +asP

(2)
1 +a2

s P(3)
1

}

= −as

{

c2[1]+d2[1]+as

(

c3[1]+d3[1]+d1
(
c2[1]−d2[1]

))

+a2
s

(

c4[1]+d4[1]+d1
(
c3[1]−d3[1]

)
+d2[0]c2[1]+d2[1]c2[0]

)}

(2.17)

P2(as) = as
{

P(1)
2 +asP

(2)
2
}

= as

{

c3[2]+d3[2]+as

(

c4[2]+d4[2]−d1(c3[2]−d3[2])
)}

(2.18)

P3(as) = as

{

P(1)
3

}

= −as
{

c4[3]+d4[3]
}

= asCF

(
307
2 −

203
2 ζ3 −45ζ5

)

(2.19)

Pn(as) = asP
(1)
n = (−1)nas

{
cn[n−1]+dn[n−1]

}
(2.20)

The elements dn[n− 1] (cn[n− 1]) can be obtained from the results in [13] for the leading renor-
malon chain insertions. The elements dn[l],(l < n−1) stem from the subleading renormalon chains.
Different relations between the elements d4 (dn) and c4 (cn) can be derived from the expression
(1.8) which is definitely true at the 5-loop level [38]. Its coefficients were obtained by us analyti-
cally from the requirement of their nf independence [38]. We also used the property of universality
of the weight function P1 (Pn) of the different βi-terms. This property implies that the first term
P1(as) in Eq.(2.17) generates the following chain of equations:

P(1)
1 = −c2[1]−d2[1] = −c3[0,1]−d3[0,1] = −c4[0,0,1]−d4[0,0,1] = . . .

= −cn[0,0, . . . ,1
︸ ︷︷ ︸

n−1

]−dn[0,0, . . . ,1
︸ ︷︷ ︸

n−1

] =

(

−
21
8 +3ζ3

)

CF (2.21)

which fixes the corresponding sums of cn and dn in any order by the universal first term P(1)
1 in the

polynomial P1. The second term of P1 in Eq.(2.17) defines a similar chain of equations

P(2)
1 = −c3[1]−d3[1]−d1 (c2[1]−d2[1]) = −c4[0,1]−d4[0,1]−d1 (c3[0,1]−d3[0,1]) = . . .

= −cn[0, . . . ,1
︸ ︷︷ ︸

n−2

]−dn[0, . . . ,1
︸ ︷︷ ︸

n−2

]−d1

(

cn−1[0, . . . ,1
︸ ︷︷ ︸

n−2

]−dn−1[0, . . . ,1
︸ ︷︷ ︸

n−2

]
)

= . . .

=

(
397
96

+
17
2

ζ3 −15ζ5

)

C2
F −

(
47
48

−ζ3

)

CFCA (2.22)
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where the explicit expression for P(2)
1 is already known (see [38]). The expressions for P(3)

1 and
P(2)

2 are determined by Eqs.(2.17) and (2.18) respectively, and read

P(3)
1 = −c4[1]−d4[1]−d1

(
c3[1]−d3[1]

)
+d2[0]c2[1]+d2[1]c2[0] (2.23)

P(2)
2 = c4[2]+d4[2]−d1(c3[2]−d3[2]) (2.24)

where their concrete form is known from the studies of Ref. [38].
Thus, P(3)

1 and P(2)
2 depend on still unknown contributions d4[1] , d4[2] and c4[1] , c4[2] for the

β -expanded form of the general SU(Nc)-group expressions for the 5-loop terms d4 and c4 obtained
in [26]. Therefore, to reformulate the considerations of [38] within the β -expansion approach, it is
necessary to determine these unknown contributions to d4 and c4.

The theoretical problem mentioned above may be solved after extra analytical evaluation of the
gluino contributions to the 5-loop perturbative coefficients d4 and c4 and applications of the results
of evaluation of the gluino contributions to the 3-loop QCD β -function [46]. The knowledge of
these inputs from the N = 1 SUSY model may also allow a better understanding of special features
and constraints on the elements of the sum of d5 + c5 coefficients which can be useful for study of
the different forms of QCD generalizations of the Crewther relation in high orders of perturbation
theory.

3. The constraints for the structure of the 5-loop analytical results

In this section, we explain how the relations discussed above and, in particular, the ones of
Eqs.(2.11-2.16) allow one to get an additional constraint which confirms the correctness of the
analytical results of Ref. [26].

We first apply the β -expansion approach to the sum d4 + c4. As the next step we consider the
concrete number of flavours which nullify the β -function coefficients β i. This is done by fixing ni as
a roots of the coefficient βi(nf = ni). The condition β0(nf = n0) = 0, which gives TFn0 = (11/4)CA,
was studied by Banks–Zaks some time ago [47]. Applying this ansatz to the sum of the β -expanded
forms for the sum of the analysed 5-loop terms, we get [38]

c4(n0)+d4(n0)=c4[0]+d4[0]+β2(n0)(c4[0,0,1]+d4[0,0,1])+β1(n0)(c4[0,1]+d4[0,1]) . (3.1)

The terms in the r.h.s. of Eq.(3.1) are already known from the r.h.s. of Eq.(2.10) for c4[0]+d4[0],
r.h.s. of Eq.(2.21) for the P(1)

1 -coefficient, and r.h.s. of Eq.(2.22) for the P(2)
1 - term. Substituting

the concrete analytical results into these expressions, we obtain [38]

d4(n0)+ c4(n0) = −
333
1024C4

F −CAC3
F

(
1661
3072 −

1309
128 ζ3 +

165
16 ζ5

)

−C2
AC2

F

(
3337
1536

+
7
2

ζ3 +
105
16

ζ5

)

−C3
ACF

(
28931
12288

−
1351
512

ζ3

)

. (3.2)

Then applying the Banks-Zaks way of fixation of nf to the concrete analytical expression for
c4(nf) + d4(nf), which follows from the work of Ref.[26], we reproduced the r.h.s. of Eq.(3.2)
[38]. This agreement gave us an extra argument in favour of the correctness of the results of distin-
guished computer analytical calculations of the INR-Karlsruhe-SINP group [26]. Moreover, having
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a look at the r.h.s. of Eq.(3.2), we observe the absence of the ζ7 and ζ 2
3 -terms which exist in ana-

lytical expressions of both d4 and c4 (see Ref.[26]). This feature observed in Ref. [38] confirms the
foundation of the proportionality of two transcendentalities mentioned above to the first coefficient
β0 of the QCD β -function [26].

In the same way, taking nf = n1,(β1(n1) = 0) one can get the following constraint:

c4(n1)+d4(n1) = c4[0]+d4[0]+β0(n1)(c4[1]+d4[1])+β 2
0 (n1)(c4[2]+d4[2])

+β2(n0)(c4[0,0,1]+d4[0,0,1])+β 3
0 (n1)(c4[3]+d4[3]) . (3.3)

The terms c4[0] + d4[0] and c4[0,0,1] + d4[0,0,1] in the r.h.s. of Eq. (3.3) can be obtained like
in the previous case, while c4[3] + d4[3] follows from Eq.(2.19). The term c4[1] + d4[1] can be
extracted from P(3)

1 in Eq.(2.23) and the term c4[2]+d4[2] can be extracted from P(2)
2 in Eq.(2.24).

The requirement β1(n1) = 0 leads to the following expression for nf:

nf =
17CA

2

(10CA +6CF)TF
. (3.4)

For this expression we get a more complicated analytical structure of the r.h.s. of Eq.(3.3) which
does not reveal any special cancellations of the transcendental functions. In view of this we do not
present it here in the explicit form.
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Appendix

Throughout these studies we used the following expressions for the coefficients of the QCD
β -function:

β0 =
11
12CA −

1
3TFnf, (3.5)

β1 =
17
24C2

A −
5

12CATFnf −
1
4CFTFnf (3.6)

β2 =
2857
3456 C3

A −
1415
1728 C2

ATFnf −
205
576CFCATFnf

+
79
864

CAT2
Fn2

f +
1

32
C2

FTFnf +
11
144

CFT2
Fn2

f , (3.7)

They are known from the 3-loop analytical calculations performed in [28] and confirmed later on
in [29]. In the case of QCD, supplemented by ng number of flavours of Majorano gluinos, the
coefficients of the β -function receive additional MS-scheme contributions obtained at 3-loops in
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[46], namely,

β 0 = β0 −
1
6CAng (3.8)

β 1 = β1 −
5
6C2

Ang −
1
8C2

Ang (3.9)

β 2 = β2 −
247
432C3

Ang +
7
54C3

ATFnfng +
11

288 CFC2
ATFnfng +

145
3456 C3

An2
g (3.10)

Up to the 2-loop level they are scheme-independent. When SUSY is not violated, the 3-loop
calculations should be performed in the dimensional reduction and DR-scheme which preserve
supersymmetry at the 3-loop level. However, since we are interested in the contributions of ng
number of gluiono flavours only, we limit ourselves to the considerations of the part of the N = 1
SUSY 3-loop contributions evaluated in the MS-scheme.
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