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Models with large extra dimensions I. Volobuev

1. Prologue

The hypothesis about the existence of extra dimensions of space-time is discussed in theoret-
ical physics for almost a century. There is a good reason to believe that this hypothesis grew from
the ideas formulated by Bernhard Riemann in his famous lecture "Über die Hypothesen, welche
der Geometrie zu Grunde liegen" (1854) (On the Hypotheses which lie at the Bases of Geometry)
[1]:

The questions about the infinitely great are for the interpretation of nature useless questions.
But this is not the case with the questions about the infinitely small. It is upon the exactness with
which we follow phenomena into the infinitely small that our knowledge of their causal relations
essentially depends. ...

Now it seems that the empirical notions on which the metrical determinations of space are
founded, the notion of a solid body and of a ray of light, cease to be valid for the infinitely small.
We are therefore quite at liberty to suppose that the metric relations of space in the infinitely small
do not conform to the hypotheses of geometry; and we ought in fact to suppose it, if we can thereby
obtain a simpler explanation of phenomena. ...

This leads us into the domain of another science, of physics, into which the object of this work
does not allow us to go today.

In this lecture Riemann also formulated the notion of n-dimensional space, which suggested
that one of the possible ways to modify the space-time geometry at small distances was to as-
sume the existence of extra dimensions. This idea was later discussed by Ernst Mach in his book
"Erkenntnis und Irrtum" (Knowledge and Error) (1905) [2].

The first attempt to construct a physical theory in a space-time with extra dimensions was
made by Gunnar Nordström in 1914 in his work "Über die Möglichkeit, das elektromagnetische
Feld und das Gravitationsfeld zu vereinigen" (On the possibility of unifying the electromagnetic
and the gravitational fields) [3], where he tried to unify a relativistic scalar gravity theory that
he was developing at that time with electrodynamics. In fact, the construction of Nordström was
very similar to the present-day braneworld models: our four-dimensional world was embedded in
a five-dimensional one as a submanifold. Though Nordström’s scalar theory of gravity was a very
important step in constructing Einstein’s general theory of relativity, it was forgotten soon after the
latter proved to be a success. Correspondingly, the idea of extra dimensions was abandoned for
five years to be rediscovered by Theodor Kaluza and implemented in the framework of Einstein’s
general theory of relativity.

2. Kaluza-Klein theory

The original theory of Kaluza [4] was a pure gravity in space-time E = M4 ×R1, where M4 is
four-dimensional space-time. If we denote the coordinates in E by XN = (xν ,y), N = 0,1, · · ·4,
ν = 0,1, · · ·3, the standard gravitational action in this space can be written as

S =
1

16πĜ

∫
E

R̂
√
−gd5X , (2.1)

where Ĝ is the five-dimensional gravitational constant and R̂ is the scalar curvature of the metric
gMN , sign(g) = (−,+ · · ·+). The five-dimensional metric gMN can be decomposed into the four-
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dimensional part and the extra components as

gMN =

(
gµν Aµ

Aν ϕ

)
, Aµ = gµ4, ϕ = g44.

If gMN does not depend on y, which Kaluza called the "cylindricity condition", then the scalar
curvature R̂ can be expressed as

R̂ = R(4)−
1
4

Fµν Fµνϕ−1 − 1
2

ϕ−2∂µϕ∂ µϕ

Fµν = ∂µAν −∂νAµ ,

R(4) being the scalar curvature of the four-dimensional space-time M4 with metric gµν .
In the original paper by Kaluza the field Aµ was interpreted as electromagnetic field. But

the subsequent studies showed that this interpretation failed and even the original ansatz for the
five-metric was inconsistent.

The next step in theories with extra dimensions was made by Oskar Klein [5], who suggested
to explain the unobservability of the fifth dimension by its compactness and extremely small size of
the order of the Planck length. In this case the five-dimensional space-time looks like E = M4×S1,
where S1 is the circle of circumference L.

He also proposed to consider the vacuum configuration of the five-dimensional metric and to
include scalar, spinor and vector fields in the multidimensional theory from the very beginning.

A free scalar field in five-dimensional space-time satisfies the five-dimensional Klein-Gordon
equation

(∂M∂ M −m2)ϕ = 0.

Each five-dimensional field can be expanded in Fourier harmonics in the coordinate y, in the
case of the scalar field ϕ(x,y) the expansion being

ϕ(x,y) = L− 1
2 ∑

n
ϕ (n)(x)exp(i

2πny
L

). (2.2)

If we substitute (2.2) into the five-dimensional equation of motion, we get that the modes ϕ (n)

satisfy equations

(∂µ∂ µ −m2
n)ϕ (n) = 0, m2

n = m2 +
4π2n2

L2 .

Thus, the mass spectrum of four-dimensional fields is defined by the eigenvalues of the mass oper-
ator, which in this case is just ∂4∂ 4. Such a mass spectrum is a characteristic feature of the theories
with extra dimensions, the form of the mass operator being defined by the geometry of the space
of extra dimensions.

The size L of the extra dimension being of the order of the Planck length, within the framework
of the mathematical apparatus of the modern quantum field theory Kaluza-Klein hypothesis leads
to the conclusion that the observed fields (i.e. the fields of the Standard Model) should be the
so called zero modes, i.e. should not depend on the coordinates of extra dimensions. Moreover,
for each observed field there should exist a tower of fields with masses of the order of the Planck
mass MPl ∼ 1/lPl , which cannot be observed at the energies, which are available for experiments
nowadays.
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Nevertheless, even in this case there remain relations between the multidimensional and the
four-dimensional theories, which can manifest themselves as certain symmetries of the reduced
four-dimensional theories and the values of their coupling constants. In particular, an important
point is the relation between the Planck mass in four dimensions MPl and the Planck mass M in
multidimensional space-time

M2
Pl = M3L, (2.3)

which can be obtained for the zero modes of gravitational field from action (2.1) in space-time
E = M4 ×S1 just by integrating it over the circle S1.

3. Large extra dimensions

The revival of the interest in theories with extra dimensions took place in the end of sixties,
when a non-abelian generalization of Kaluza-Klein theory was found [6]. In particular, it was
shown that a gravity theory invariant under the action of a Lie group G in space-time E = M4 ×
G renders a gauge field in the four-dimensional space-time M4 with the gauge group G. This
result lead to numerous attempts to construct the Standard Model starting from a multidimensional
theory. Since the spinor fields could not be derived from the metric of the multidimensional space-
time, such fields and also gauge and scalar fields were introduced into the multidimensional theory
from the very start. The interpretation of a theory in a space-time with extra dimensions in terms
of a four-dimensional one was given then the name of dimensional reduction. The presence of
boson fields in the multidimensional theory led to the idea to explain the factorized structure of
the multidimensional space-time dynamically as a result of interaction of gravity with gauge and
scalar fields. This procedure was called spontaneous compactification. The attempts to construct
the Standard Model along these lines showed that large extra dimensions were needed [7], which
was obviously in contradiction with their unobservability.

A solution to this problem was found in 1983 by Rubakov and Shaposhnikov, who put forward
a new scenario for Kaluza-Klein theories based on the idea of localization of states [8]. They
considered a real Higgs field in 5-dimensional space-time with the Lagrangian

L =−1
2

∂Mϕ∂ Mϕ − λ
4
(ϕ 2 − m2

λ
)2.

The Higgs vacua of the system are ϕ 0 =± m√
λ

and an exact solution connecting these vacua is

ϕ cl(y) =
m√
λ

th(
my√

2
).

The energy density of the solution is localized in the vicinity of the 3-dimensional hypersurface
y = 0 and has a width of the order 1/m. Such an object is called a thick domain wall and serves as
a potential well for the fluctuations of the field ϕ(x).

It was shown that there are only two modes of the fluctuations that are localized on the domain
wall. Moreover, interaction of these modes cannot produce unlocalized modes, if the center of mass
energy is less than

√
6m. Thus, for sufficiently small energies the theory describes a 4-dimensional

world, although the whole world is, in fact, 5-dimensional.
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This model suggests a possibility for extra dimensions to be unobservable, if the fields of
the Standard Model are localized by a certain mechanism on a three-dimensional hypersurface in
multidimensional space-time. The corresponding localization mechanism turned out to be rather
simple for spinors, but a plausible mechanism for gauge fields has not been found yet.

Rubakov and Shaposhnikov also proposed the following ansatz for multidimensional metric,
which is compatible with this hypothesis [9]:

ds2 = e−2σ(yi)gµνdxµdxν +gikdxidxk, (3.1)

{yi} being the coordinates of extra dimensions.
If the thickness of the domain wall goes to zero, it turns into a three-dimensional hypersurface

in the multidimensional space, on which the field of the Standard Model are presumably trapped;
such an object is called a membrane, or just a "brane". There are indications that this scenario can
be implemented in the theory of superstrings.

It is clear that within the framework of this scenario extra dimensions may be much larger,
than the Planck length (or even infinite). In paper [10] a single brane without tension (i.e. energy
density) in a space-time with an arbitrary number of compact extra dimensions was considered. In
this case relation (2.3) between the multidimensional Planck mass and the four-dimensional one,
which for d extra dimensions looks like

M2
Pl = Md+2Ld ,

yields that the Planck mass in multidimensional space (in the bulk) M may be much less than the
Planck mass in four dimensions MPl , if the volume of the space of extra dimensions Ld is large.
In other words, gravity in multidimensional space-time becomes "strong" not at the energies of the
order of 1019 GeV , but at much lower energies, maybe of the order of 1−10TeV . Thus, the scenario
provides a solution to the hierarchy problem: it gives a strong gravity in the multidimensional
space-time and a weak gravity on the brane. The effects due to the interaction of this "strong"
gravity with the fields of the Standard Model could be observable already at the energies, which
are available at the existing colliders.

A flaw of this approach is the approximation of the zero brane tension, which is rather too
rough; it turns out that the proper gravitational field of the brane cannot be taken into account
perturbatively at all.

In paper [11] the first exact solution for two branes interacting with gravity in five-dimensional
space-time was found, which allows one to estimate the influence of the proper gravitational field
of the brane on these results. First of all, it turned out that if extra dimensions are compact, there
should exist at least two branes, and the background metric should be exactly of form (3.1). A
similar solution for two branes in space-time with two extra dimenions with the same form of
metric was later found in [12]. In what follows we will discuss in more detail the five-dimensional
model, which turned out to be more interesting.

4. The Randall-Sundrum model

The model is called the Randall-Sundrum model and is similar to the original Kaluza-Klein
theory in the sense that it is a gravity theory in 5-dimensional space-time E = M4 × S1 with co-
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ordinates XM = (xµ ,y), the circle S1 now being of circumference 2L. But unlike the original
Kaluza-Klein theory the gravity interacts with two 3-branes. Thus, the action of the system is

S =
1

16πĜ

∫
d4x

∫ L

−L
dy(R̂−Λ)

√
−g−λ1

∫
y=0

√
−g̃d4x−λ2

∫
y=L

√
−g̃d4x, (4.1)

where Λ is the cosmological constant in 5-dimensional space-time, g̃µν is the metric induced on the
branes, g̃ = detg̃µν , and the subscripts 1,2 distinguish the branes. Moreover, the 5-metric g must
be invariant under the reflection (xµ ,y) → (xµ ,−y), which is equivalent to identifying the points
(xµ ,y) and (xµ ,−y) of S1 and reducing it to the orbifold S1/Z2.

If ansatz (3.1) for the metric, which in the case of one extra dimension looks like

ds2 = e−2σ(y)ηµνdxµdxν +dy2 ≡ γMN(y)dxMdxN , (4.2)

is substituted into Einstein equations following from action (4.1), they reduce to(
dσ
dy

)2

= − Λ
12

6
d2σ
dy2 = 16πĜ(λ1δ (y)+λ2δ (y−L)) .

The solution to these equation with the orbifold symmetry is

σ(y) = k|y|+ c, Λ =−12k2 (4.3)

λ1 = −λ2 =
3k

4πĜ
,

where k is a new parameter of the dimension of mass, which can be interpreted as the inverse
effective thickness of the branes, and c is an integrations constant. The choice of this constant is
equivalent to a choice of the coordinates {xµ} on the branes, and we will keep it arbitrary for the
moment.

Two remarks are in order. First, the space E with metric (4.2) and σ given by solution (4.3) is
a piece of five-dimensional anti-de Sitter space in horospherical coordinates [13]. Second, we see
that brane 1 has a positive energy density, whereas brane 2 has a negative one.

Metric (4.2) with σ given by equation (4.3) is taken to be the vacuum of the theory, and the
physical fields are fluctuations hMN(x,y) above this vacuum, which are treated perturbatively:

gMN(x,y) = γMN(y)+ κ̂hMN(x,y), (4.4)

where κ̂ =
√

16πĜ.
If we substitute this representation into action (4.1) and keep the terms of zero order in κ̂ , we

get a free action for the physical degrees of freedom of the model. The corresponding Lagrangian
looks like

L /
√
−γ = −1

4
(
∇RhMN∇RhMN −∇Rh∇Rh+2∇MhMN∇Nh− (4.5)

− 2∇MhMN∇RhRN
)
+

k2

2
(hMNhMN +hh)+

+

[
−2khMNhMN + khh̃− khMνhMν +3k(hµν hµν − 1

2
h̃h̃)
]

δ̃ ,

6
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where γ = detγMN , h = γMNhMN ,∇M stands for the covariant derivative with respect to metric γMN ,
and δ̃ = δ (y)−δ (y−L).

It is a common knowledge that linearized gravity is a gauge theory, and to isolate the physical
degrees of freedom we have to study the gauge invariance of this Lagrangian.

On can check that the Lagrangian is invariant under the gauge transformations

h(′)µν (x,y) = hµν (x,y)−
(
∂µξν +∂νξµ −2γµν∂4σξ4

)
(4.6)

h(′)µ4 (x,y) = hµ4 (x,y)−
(
∂µξ4 +∂4ξµ +2∂4σξµ

)
h(′)44 (x,y) = h44 (x,y)−2∂4ξ4,

where ∂4 ≡ ∂
∂y and the gauge functions ξMN(x,y) satisfy the orbifold symmetry conditions.

With the help of these transformations one can prove that there exist a gauge

hµ4 = 0, h44 = h44(x)≡ ϕ(x), (4.7)

which we call the unitary gauge, because the main degrees of freedom, which include the tensor
field hµν and the scalar filed ϕ(x), are already isolated. Nevertheless, this name is somewhat
relative, because there remain gauge transformations, satisfying

∂4
(
e2σ ξµ

)
= 0, (4.8)

which are necessary to remove the gauge degrees of freedom of the massless graviton.
Equations of motion for different components of hMN(x,y) can be derived from (4.5) by the

standard procedure and in the unitary gauge (4.7) look like:
1) µν-component

1
2

(
∂ρ∂ ρhµν −∂µ∂ ρhρν −∂ν∂ ρhρµ +

∂ 2hµν

∂y2

)
−2k2hµν +

1
2

∂µ∂ν h̃+ (4.9)

+
1
2

∂µ∂νϕ +
1
2

γµν

(
∂ ρ∂ σ hρσ −∂ρ∂ ρ h̃− ∂ 2h̃

∂y2 +4∂4σ∂4h̃−∂ρ∂ ρϕ +12k2ϕ
)

+
[
2khµν −3kγµνϕ

]
δ̃ = 0,

2) µ4-component

∂4(∂µ h̃−∂ νhµν)+3∂4σ∂µϕ = 0, (4.10)

which is a constraint,
3) 44-component

1
2
(∂ µ∂ νhµν −∂ρ∂ ρ h̃)+

3
2

∂4σ∂4h̃+6k2ϕ = 0. (4.11)

To explicitly isolate and to decouple the physical degrees of freedom we make a substitution

hµν = bµν − γµν(y)(k|y|+ s)ϕ +
1

2k2

(
1
2
− k|y|− s+

s
2

e2k|y|
)

∂µ∂νϕ , s =
kL

(e2kL −1)
. (4.12)

7
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It can be inferred from equations (4.9), (4.10), and (4.11) that the scalar field ϕ(x) is massless
and the field bµν(x,y) can be made transverse-traceless by the remaining gauge transformations
and satisfies the equation

1
2

e2σ�bµν +
1
2

∂ 2bµν

∂y2 −2k2bµν +2kbµν δ̃ = 0. (4.13)

Thus, the fluctuations of the metric above the background of the Randall-Sundrum solution
are described by the field bµν(x,y) of spin 2 and the massless scalar radion field ϕ(x).

Substitution (4.12) also diagonalizes Lagrangian (4.5), which gives that the canonically nor-
malized radion field is

φ = e−c

√
3kL2

e2kL −1
ϕ . (4.14)

To understand the physical meaning of the radion field let us calculate the distance between the
branes along a geodesic x = const:

l =
L∫

0

√
ds2 ∼

L∫
0

(1+
1
2

κ̂h44)dy = L(1+
1
2

κ̂ϕ(x)). (4.15)

This formula implies that the field ϕ(x) describes local variations of the brane separation, i.e.
oscillations of the branes with respect to each other.

The tensor field bµν(x,y) can be expanded as

bµν(x,y) = ∑
n

bn
µν(x)ψn(y), (4.16)

where bn
µν(x) are four-dimensional fields with spin 2 and certain masses mn. The latter and the

wave functions of the modes ψn(y) are defined by the equation[
1
2

d2

dy2 +2k(δ (y)−δ (y−L))−2k2
]

ψn(y) =
m2

n

2
e2σ ψn(y). (4.17)

This equation can be solved exactly, the wave function of the zero mode being proportional to
exp(−2σ) and those of massive modes being expressible in terms of Bessel and Neumann func-
tions.

Now we are in a position to find the relation between the 5-dimensional gravitational constant
Ĝ and the 4-dimensional G, which will give us the relation between the Planck masses. To this end
we have to calculate the curvature of the metric

ds2 = e−2σ(y)ḡµνdxµdxν +dy2 (4.18)

with ḡµν = ηµν +hµν(x) and integrate it over the extra dimension. Since the wave function of the
massless graviton is proportional to exp(−2σ), this metric corresponds to four-dimensional gravity
only and integrating it over the extra dimension gives an effective action for 4-dimensional gravity

Se f f =
1

16πĜ

∫ L

−L
dye−2(k|y|+c)

∫
R(ḡ)

√
−ḡd4x = e−2c 1− e−2kL

16πĜk

∫
d4xR(ḡ)

√
−ḡ, (4.19)
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which has to coincide with the Hilbert-Einstein action for the metric ḡµν . But since we have two
branes, we have to realize, to which brane this metric corresponds.

If we are on the brane at y = 0, the metric on the brane induced from metric (4.18) coincides
with ḡµν only if c = 0. This leads to the following relation between the gravitational constants

G1 =
Ĝk

1− e−2kL , (4.20)

which implies that relation (2.3) is modified to be

M2
1 = M3 1− e−2kL

k
. (4.21)

Thus, if we live on the brane at y = 0, we have to put M1 = MPl , and in this case relation (4.21)
demands that the five-dimensional Planck mass M and the parameter k also should be of the order
of MPl, M ∼ k ∼ MPl. This means that for an observer on brane 1 the five-dimensional gravity is
as weak, as the four-dimensional one.

If we are on the brane at y = L, the metric on the brane induced from metric (4.18) coincides
with ḡµν only if c = −kL. In this case formula (4.19) gives us the following relation between
Newton’s constant G2 on brane 2 and the five-dimensional one

G2 =
Ĝk

e2kL −1
, (4.22)

and the corresponding relation between M2 and the five-dimensional Planck mass M

M2
2 = M3 e2kL −1

k
. (4.23)

Obviously, both relations (4.21) - (4.23) reduce to (2.3) (with L replaced by 2L) for k → 0,
i.e. when the effective thickness of the brane goes to infinity and the very notion of a brane is
meaningless.

If our world is situated on the brane at y = L, we have to put M2 = MPl . In this case relation
(4.23) with kL ∼ 35 gives that the five-dimensional Planck mass M and the parameter k may be of
the order of 1TeV . That is the hierarchy problem of the gravitational interaction is solved for an ob-
server on brane 2: the energy scale of the five-dimensional gravity comes down to the electroweak
energy scale, and the gravity on the brane becomes weak due to the exponential warp factor in
relation (4.23). Thus, five-dimensional gravity in the Randall-Sundrum model looks different for
observers on different branes.

In what follows we will assume that we live on the brane at y = L and will consider the
interaction of the physical fields with matter. This interaction can be derived from the standard
action of matter in gravitational field and has the following form:

κ̂
2

∫
y=o

hµν(x,0)T 1
µν

√
−detγµν(0)dx++

κ̂
2

∫
y=L

hµν(x,L)T 2
µν

√
−detγµν(L)dx, (4.24)

where T 1
µν and T 2

µν are energy-momentum tensors of matter on brane 1 and brane 2 respectively:

T 1,2
µν = 2

δL1,2

δγµν − γ1,2
µν L1,2.

9
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On the brane at y = L the explicit form of this interaction is

Sint =
1
2

∫
y=L

(
κ2 b0

µν(x)T
µν +κ1

∞

∑
n=1

ψn(L)e−kL

N0
bn

µν(x)T
µν − κ1√

3
φ T µ

µ

)
dx, (4.25)

where

κ1 = κ̂
√

k
1− e−2kL , κ2 = κ1e−kL = κ̂

√
k

e2kL −1
, (4.26)

and the factor ψn(L)e−kL

N0
in front of bn

µν(x) turns out to be of the order of unity for small n.
With the help of this Lagrangian one can calculate the effects due to the interaction of the

five-dimensional gravity with matter on brane 2. In particular, one gets for Newton’s law

V =−G2

(
1+

e2kL

3

)
m
r
. (4.27)

The second term in the brackets in this formula is the contribution of the radion field, which is
e2kL/3 ∼ 1032 times larger than the contribution of the massless graviton. Thus, a scalar gravity
is realized on brane 2, which is phenomenologically unacceptable. A way to cure this problem
without violating the solution of the hierarchy problem is to give a mass to the radion. It turns out
that this is equivalent to stabilizing the distance between the branes.

5. Stabilized Randall-Sundrum model

Mechanisms for stabilizing the Randall-Sundrum model were put forward in papers [14, 15].
Both of them employ a five-dimensional scalar field to stabilize the inter-brane distance, but the
mechanism of paper [15] seems to be preferable because it is based on an exact solution for gravity
interacting with two branes and a scalar field in five-dimensional space-time. The physical de-
grees of models stabilized by this mechanism were isolated in paper [16]. They are tensor fields
bn

µ(x),n = 0,1, · · · with masses mn(m0 = 0) and wave functions in the space of extra dimension
ψn(y)), and scalar fields φn(x),n = 1,2, · · · with masses µn and wave functions in the space of extra
dimension gn(y). Their interaction with the SM fields is described by the Lagrangian

Sint =
κ̂
2

∫
y=L

(
ψ0(L)b0

µν(x)T
µν +

∞

∑
n=1

ψn(L)bn
µν(x)T

µν − 1
2

∞

∑
n=1

gn(L)φn(x)T
µ

µ ,

)
dx. (5.1)

T µν being the energy-momentum tensor of the SM fields.
The wave function of the zero mode ψ0(L) again gives us relation (4.23) between the five-

and four-dimensional Planck masses. The coupling constants to matter of the massive tensor fields
remain essentially the same as in the unstabilized model, i.e. of the order of 1TeV−1. The couplings
of the scalar fields are also defined by their wave functions and are essentially of the same order.

The present-day results from the Tevatron [17] indicate that we do not see the resonances,
corresponding to these tensor and scalar modes. We can assume that we have not yet reached the
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energies necessary for their production. In this case the interactions due to exchange of these tensor
and scalar modes can be very well approximated by contact interactions of a very special form:

Le f f =
1.82

Λ2
πm2

1
T µν ∆̃µν ,ρσ T ρσ , (5.2)

∆̃µν ,ρσ =
1
2

ηµρηνσ +
1
2

ηµσ ηνρ −
(

1
3
− δ

2

)
ηµνηρσ , (5.3)

where m1 and Λπ are the mass and the coupling constant of the first tensor mode and the constant
δ describes the contribution of the scalar modes. For example, for M = 2TeV, k = 1TeV, kL = 35
and the mass of the first scalar mode of the order of 2 TeV these parameters turn out to be Λπ ≃
8TeV, m1 ≃ 3.83TeV, δ ≃ 0.7.

In the first approximation in the SM coupling constants the effective interaction Lagrangian
includes a sum of various 4-particle effective operators (not only 4-fermion, but also 2-fermion-
2-boson and 4-boson), which are invariant with respect to the SM gauge group and lead to a well
defined phenomenology. Various processes due to this Lagrangian were studies in paper [18].

Below we show the results of numerical studies of Drell-Yan processes, because they are most
sensitive to new physics. These analytical and numerical calculations, including the Monte-Carlo
simulation of the SM background in a Gedankenexperiment for the LHC, were carried out with the
help of the CompHEP package [19], realized on the basis of the package for symbolic calculations
FORM [20]. The Feynmann rules following from effective Lagrangian (5.2) were incorporated into
this programme, which allows one to use this code for event generation and then for data analysis
in a real experiment.

In fig. 1 dilepton invariant mass distributions are plotted for different values of the cou-
pling parameter 0.91/Λ2

πm2
1 for the Tevatron. In figures 2, 3 such distributions are plotted for

0.91/Λ2
πm2

1 ×TeV4 = 0.66 for the Tevatron and for 0.91/Λ2
πm2

1 ×TeV4 = 0.0014 for the LHC. The
error bars in these figures are not usual error bars, but take into account both systematic errors
(detector resolution, QCD uncertainties, errors in electroweak parameters and luminosity) and the
statistical uncertainties of the dilepton invariant mass distribution and define the values of the cou-
pling parameter, for which the contact interaction cannot be observed at the Tevatron and the LHC.
For the largest luminosities, they are

Tevatron(10 f b−1) :
0.91

Λ2
πm2

1
×TeV4 < 0.66, LHC(100 f b−1) :

0.91
Λ2

πm2
1
×TeV4 < 0.0014. (5.4)

These constraints can be used to estimate the lowest value of parameter Λπ , for which the ef-
fects of the contact interaction cannot be resolved, from the demand that the width of the resonance
is less than its mass: Γ1 < m1/ξ , where ξ is a number, ξ > 1. Utilizing (5.4) and the expression
for the total graviton width [18], we find the following unobservability range for the parameter Λπ :

Tevatron : Λπ > 0.61 ·ξ 1/4 TeV, LHC : Λπ > 2.82 ·ξ 1/4 TeV, ξ > 1. (5.5)

Next we consider the case, where the mass of the first KK resonance is within or close to
the accessible energy range. Here the approximation of the interaction due to the exchange of the
first KK resonance by a contact interaction fails, and we have to take it into account exactly. The
contribution of all the KK modes above it can still be described by effective Lagrangian (5.2) with
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the coupling parameter 0.41/Λ2
πm2

1, remaining after dropping the contribution of the first resonance
to the sum.

To illustrate the modification of distributions due to the contributions of the towers of KK
gravitons we carried out the calculations for two sets of parameters chosen so that for one set the
first KK resonance lies within the energy range of direct observation and for the other one beyond
it. The first set includes the already mentioned values m1 = 3.83 TeV, Λπ = 8 TeV and the width
of the first resonance Γ1 = 0.08 TeV. In the context of the RS1 model such a resonance (fig. 4)
lies close to the boundary of direct observation expected for the LHC. The mass of the first KK
resonance in the second set of parameters (m1 = 10 TeV, Λπ = 14 TeV, Γ1 = 0.5 TeV) is close to
the maximal collider energy and it is not directly observable.

In fig. 5 and fig. 6 one can see that the contribution of the KK tower increases the production
cross-section more than three times for invariant masses below the first KK resonance mass. The
situation is quite different for invariant masses above the first resonance mass, where, on a par with
the resonance peak, there appears a dip due to the destructive interference between the contribution
of the first KK resonance and the contribution of the rest of the KK tower. The local minimum
is at Mmin ≈ 1.5m1. The cross-section growth after this minimum is strongly suppressed by the
parton structure functions, which leads to an extra hump in the distribution in the invariant mass.
However, fig. 4 shows that an experimental observation of this hump against the SM background
is rather unlikely.

Similar interference effects take place, when one considers KK towers of the SM fields. For
example, if gauge fields can propagate in extra dimensions the KK excitations of W contribute to the
process of single top production. We carried out the corresponding calculations taking into account
the contributions of W and W ′ exactly and approximating the contribution of the remaining KK
tower by Fermi’s interaction with the coupling constant 1/M2

W ′
−sum. The results of the calculations

with the parameters MW ′ = 2TeV, MW ′
−sum = 2.8TeV, ΓW ′ = 65.7GeV are presented in figures 7, 8,

where the interferences between W and W ′ and between W ′ and the remaining KK tower are clearly
seen.

6. Conclusion

Theories with extra dimensions have a long history marked by alternating periods of oblivion
and keen interest. The latest developments in this field abolished the old restrictions on the size of
the extra dimensions, and now their predictions can be confronted with the experiment.

We believe that nowadays the most consistent model with extra dimensions is the stabilized
Randall-Sundrum model. If its fundamental parameters lie in the TeV energy range for the observer
on the negative tension brane, the effects due to the massive modes can be observed in collider
experiments. If the masses of the KK gravitons and of the excitations of the SM fields are beyond
the energy range of direct observation, the interactions due to KK towers can be well approximated
by contact interactions of the type of Lagrangian (5.2) or of Fermi’s four-fermion Lagrangian, the
Tevatron data demanding the coupling constant Λπ to be larger than 610GeV . If these masses are
in the energy range of direct observation, the effective contact interaction induced by the infinite
towers of the massive gravitons or of the KK excitations of the SM particles should also be taken
into account to correctly look for KK resonances and to model the distribution tails.
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