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The ausality onept in quantum �eld theory andin quantum mehanis.
D.A. Slavnov�Department of Physis, Mosow State University, Russia.E-mail: slavnov�theory.sinp.msu.ruWe disuss the ausality problem in quantum theory. We show that there exists a formulation ofquantum theory that, on one hand, preserves the mathematial apparatus of the standard quantummehanis and, on the other hand, ensures the satisfation of the ausality ondition for eahindividual event inluding the measurement proedure.
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The ausality onept D.A. SlavnovThe ausality problem is one of the main problems in the quantum theory. It attrated espeial-ly lose attention during the onstrution of the quantum �eld theory, where the ausality (loality)axiom plays a entral role [1, 2℄. This axiom has different formulations; however, without goinginto mathematial subtleties, it an be redued to the following: boson �elds must ommute atspae-like separated points, while fermion �elds must anti-ommute.The following argument is often used as a physial justi�ation of this axiom. The results ofthe measurement in a bounded domain of a Minkowski spae (a loal measurement) are determinedby boson-�eld values and by bilinear ombinations of fermion �elds in this domain.Suh loality requirement is purely mathematial in its nature. It an be formulated only inthe framework of a partiular mathematial formalism, and it is a part of that formalism. In ageneral disussion of ausality it is desirable to proeed from requirements that an be formulatedin physis terminology and that an be heked in the experiment diretly. That is, suh formulationmust be fairly obvious.It is Einstein ausality. If two bounded domains O1 and O2 of the Minkowski spae are spae-like separated, then the results of measurements in the domain O1 do not depend on any manipula-tions in the O2.Pratially no one argues with the above formulation. However, the situation hanges radiallywhen we try to supplement the above requirement with the following one. There exists a ertainphysial reality, whih determines the results of a loal measurement.Many people objet to suh an extension of the ausality requirement. The arguments on thismatter began a long time ago. One an reall the famous debates between Einstein [3℄ and Bohr [4℄.Einstein was in favor of the above extension, while Bohr was against it.Later on, the majority's opinion within the physis sienti� ommunity leaned towards theBohr side. The results of many modern experiments related to this problem are urrently onsideredas proof that the physial reality mentioned above does not exist.However, if we abandon the extension formulated above, we almost ompletely lose the physi-al foundation behind the loality axiom aepted in the quantum �eld theory. This rejetion wouldfore us to assume that neither loal �elds, nor their ombinations desribe a loal reality (beauseit does not exist). Then, it is not lear why these ombinations must ommute in spae-like sepa-rated domains.Thus we have a deadlok situation. The assumption of the existene of a loal physial realityontradits the mathematial formalism of the quantum theory. At the same time, the rejetionof this assumption denies the physial foundation one of the main axioms in the mathematialformalism of the quantum �eld theory.However, the mathematial formalism of the quantum theory an be ompatible with the as-sumption of the existene of physial reality determining the results of loal measurements [5, 6℄.The often-produed inompatibility proofs have the following two �aws. First, these proofs oftenpoint out toward a ontradition between the experimental data and ertain mathematial assump-tions, whih are used in the onstrution of mathematial formalism. The questions of physialvalidity of these assumptions and their neessity are usually not disussed. Seond, the interpreta-tion given to the obtained experimental data is far from being always adequate.The so-alled de Broglie waves an be onsidered as one of the most striking examples ofinadequate interpretation. In the beginning of pratially any textbook on quantum mehanis it is2
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The ausality onept D.A. Slavnovsaid that a de Broglie wave with the wavelengthl = 2p h̄k : (1)is assoiated with any quantum partile having the momentum k. The results of eletron interfer-ene are mentioned as examples supporting the above statement. In agreement with (1) a learinterferene pattern was observed in the experiment.Equation (1) beame the basis of subsequent assertions, that the distintive feature of quantumpartiles is the presene of both orpusular and wave properties.These assertions seem to be quite well supported experimentally. Nevertheless, we would liketo examine if this is indeed the ase.Let us turn to the results of more reent experiments performed by Tonomura [7℄. Theseexperiments investigated eletron beam sattering by a biprism, whih by its physial properties isanalogous to a double-slit sreen. The beam intensity was so low, that on average there was lessthan one eletron in the experimental apparatus at any single moment. This allowed one to negletthe in�uene of eletron interation on the results of the experiment. Moreover, it was possible toregister the results of passage of a small number of eletrons in this experiment.The experimental results are shown in Fig. 1. The individual photographs orrespond todifferent exposure times. The photograph (1) registered traes of 10 eletrons, (2) � 200, (3) �6000, (4) � 40000, (5) � 140000.When only a small number of eletrons are registered (the photographs (1) and (2)) the inter-ferene is not showing through. A pattern appears only after a very large number of eletrons wereregistered (the photographs (4) and (5)). If we try to determine the eletron wavelength with a helpof the photographs (1) and (2), we do not obtain anything similar to de Broglie Eq. (1).These results speak in favor of the fat that wave properties are not revealed by a single ele-tron. They beome apparent only in a speially prepared ensemble of eletrons. In the onsideredase, all eletrons had approximately the same momentum.Just as interferene pattern, quantum state is not the harateristi of an individual physialobjet. It desribes ensemble of suh objets. Therefore, the ommonly used in textbooks formu-lation of the mathematial formalism of the quantum theory, with wave funtions or state vetorsas the basi elements, is not ideal for disussions of the loality problem, beause these objetsthemselves are obviously nonloal.The so-alled algebrai approah [8, 9℄ is muh better suited for these purposes. Unlike thetraditional approah, the Hilbert's spae of state vetors is no longer a primary objet of the theorywithin the algebrai approah, and observables are no longer de�ned as operators in the Hilbertspae.Observables, more spei�ally, loal observables are onsidered as the primary elements ofthe theory. Heuristially, an observable is de�ned as suh an attribute of the investigated physialsystem for whih one an obtain some numerial value with the help of a ertain measuring pro-edure. Aordingly, for loal observables one an obtain numerial values with the help of loalmeasurements.Initially the observables are not related to operators in a Hilbert spae at all. The Hilbert spaeitself is onstruted with the help of observables as some seondary objet. After that a onnetionbetween the observables and the operators in this spae is established.3
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The ausality onept D.A. Slavnov

Figure 1: Interferene pattern in eletron sattering: 10; 200; 6000; 40000; 140000 eventsWe will ondut the subsequent examination in the framework of a speial version of thealgebrai approah.We begin from stating the basi properties of observables. The main property is the followingone. The observables an be multiplied by real numbers, added to eah other, and multiplied byone another. This property is formulated as the following postulate.POSTULATE 1. The observables �A of a physial system are Hermitian elements of some C�-algebra [10℄.Postulate 1 (and all the subsequent ones) is valid for lassial systems as well. The set of ob-servables will be denotedA+ (A+ �A). In lassial systems all observables are ompatible witheah other (an be measured simultaneously). In a quantum system they an be either ompatibleor inompatible.POSTULATE 2. The set of ompatible with eah other observables is a maximal real assoiativeommutative subalgebraQx of the algebraA (Qx �A+).4
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The ausality onept D.A. SlavnovThe index x , whih runs through the set X, distinguishes one suh subalgebra from another.For a lassial system the set X ontains just a single element, for a quantum system X ontainsin�nitely many elements.The set of observables A+ an be onsidered as a mathematial model of a quantum system.Aordingly, the subsetQx an be onsidered as observables of some lassial subsystem. Thissubsystem is open, beause the quantum-system's degrees of freedom orresponding to observablesfrom different subsetsQx an interat with eah other.Moreover, these lassial subsystems may not have their own dynamis, beause the gen-eralized oordinates and momenta orresponding to the same degree of freedom, may belong todifferent subsets of Qx . Therefore, the traditional approah for de�ning the state as a point ofa phase spae is not suitable for suh subsystems. But, speifying a point in the phase spae isequivalent to setting initial onditions for the equations of motion. This allows one to �x the valuesof all observables of the onsidered system.However, one an avoid using equations of motion and the initial ondition, and �x the valuesof all observables diretly. Suh an approah is suitable for open systems as well.Measuring the sum of observables in any onrete lassial system yields the sum of the val-ues of the individual observables, and measuring the produt of observables yields the produtof their individual values. In other words, speifying the values of all observables is equivalentto speifying some homomorphi map of the algebra of observables into the set of real numbers.For ommutative assoiative algebra, suh a map is alled a harater. Therefore we aept thefollowing postulate.POSTULATE 3. The state of a lassial subsystem, whose observables are elements of a subal-gebraQx , is desribed by a harater of this subalgebra.This de�nition of the state of a lassial subsystem has an important advantage, that it anbe generalized to the quantum ase. Eah quantum observable belonging to A+, simultaneouslybelongs to some subalgebra Qx . This allows one to onsider a quantum system as a family oflassial subsystems. If we knew the states of all these subsystems, we ould have predited theresult of measuring any observable of the quantum system. This gives us grounds for aepting thefollowing postulate.POSTULATE 4. The result of measuring any observable of a physial system is determined byits elementary state j .Here, j is a family j = [jx ℄ of haraters jx of all subalgebrasQx . Eah subalgebraQx inthe family is represented by a single harater.At �rst it may seem that the last postulate ontradits the fat that one annot predit themeasurement results for all observables of a quantum system. However, there is no ontraditionhere. The point is that we an measure simultaneously (that is in a ompatible way) only ompatibleobservables. These observables belong to a ertain subalgebra Qx . Lets say for instane theybelong to the subalgebra with the index x = h . Then, from the omplete set [jx ℄ we an speifyonly one harater jh . 5
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The ausality onept D.A. SlavnovEndowed with suh information we an predit only the measurement results for observablesbelonging toQh . We will not be able to say anything ertain about the values of other observables.Additional measurements, if they are not ompatible with the previous ones, will not improve thesituation. They will produe new information about the quantum system; however, simultaneouslythe additional measurements will disturb the state of our system and will make the informationobtained earlier worthless.Figuratively speaking, an elementary state is a holographi image of the system under investi-gation. Using lassial measuring devies we an look at it from one side only, and, hene, obtaina two-dimensional image. Moreover, the measurement will disturb the system and will hange itsoriginal holographi image.Therefore, if later we will look at the system from another side, we will see a two-dimensionalprojetion of the new holographi image. Thus, we will never be able to see the entire holographiimage.In onnetion with the above it is useful to introdue the notion of jh -equivalene. Two ele-mentary states j = [jx ℄ è j 0 = [j 0x ℄will be alled jh -equivalent, if jh =j 0h . The relations betweenthe remaining haraters jx and j 0x an be arbitrary. The lass of jh -equivalent elementary stateswill be denoted fjgjh . The most that one an possibly learn about an elementary state j is that itbelongs to some equivalene lass j 2 fjgjh .There is one more obstale preventing unambiguous preditions of measurement results.One and the same observable �A may belong simultaneously to several subalgebras Qx : �A 2Qx \Qx 0 (x 6= x 0).Therefore, it is not lear whih of the funtionals (haraters) jx or jx 0 will desribe the resultsof a partiular measurement.At �rst it may seem that this additional ambiguity an be easily eliminated with the help of theadditional ondition jx ( �A) = jx 0( �A); åñëè �A 2Qx \Qx 0 : (2)However, this ondition leads to numerous ontraditions. On the other hand, one an show thatthe ondition (2) is not a neessary one. Indeed, the measurement result may depend not only onthe system under investigation, but on the harateristis of the measuring devie as well.From the observer's point of view suh dependene is extremely objetionable, and experi-mentalists try to minimize it as muh as possible.We have ome to think that measurement results are virtually independent of the harateristisof "good" measuring devies. However, for this to be true all the devies used for measuringthe observable of interest must at least be alibrated in a onsistent way. One an show that theexistene of inompatible measurements in the quantum ase makes suh alibration far from beingalways possible. In partiular, if we assign a ertain type of measuring devies (x -type) to everysubalgebraQx , then, as it turns out, the devies of different types annot be alibrated onsistently.Therefore, one annot get rid of a possible dependene of the measurement results on the devietype (or, on the index x ).Thus, value of an observable is not attribute of physial system. Suh attribute ( loal physialreality) is the elementary state. 6
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The ausality onept D.A. SlavnovThe above assertion does not exlude that for some elementary states j Eq. (2) will be validfor allQx ,Qx 0 , ontaining the observable �A. In this ase we shall say that the elementary state jis stable with respet to the observable �A.Measurements allow one to establish that the elementary state j of the system under inves-tigation belongs to some equivalene lass j 2 fjgjh . Thereafter, we an make the followingpreditions. Measuring devies of the h-type will yield the value A = jh( �A) for the observable�A 2Qh . From now on the measurement result is denoted by the same symbol as the observableitself, but without the "hat."If the elementary state j is stable with respet to the observables �A2Qh , then the same resultwill be obtained by using measuring devies of any type x . One annot say anything de�nite aboutmeasurement results for observables �A =2Qh , beause we will obtain different values for differentelementary states j 2 fjgjh .Within the standard mathematial formalism of quantum mehanis all the physial propertiesmentioned above are exhibited by quantum states spei�ed by partiular values of a omplete set ofommuting observables. This allows one to state the following de�nition of a quantum state withinthe proposed approah.DEFINITION. A quantum state Yjh is the lass fjgjh jh - equivalent elementary states,whih are stable with respet to the observables �A 2Qh .It is usually assumed that a quantum stateYjh appears as a result of measuring the observables�A 2Qh , where a spei�ed value is registered for eah of the observables �A Of ourse, this is notalways true, at least, beause some partiles of the investigated system an be absorbed by thedevie in the measuring proess. In order for a measurement to be simultaneously a preparation of aquantum state, it must be reproduible. If repeated measurements of an observable �A give identialresults, we shall mean the measurements reproduible. Note that the repeated measurements arenot neessarily performed by measuring devies of the same type.Within the standard mathematial formalism of quantum mehanis pure states are de�ned asvetors jFi of some Hilbert stateH.These vetors are used for alulating the average values of observables in the orrespondingquantum states. This de�nition works very well for applied purposes; however, it does not havean intuitively lear physial interpretation. Within the approah proposed in the present work theaverage value of an observable is onneted in a natural way with the probability distribution of theelementary states j within the equivalene lass j 2 fjgh .One has to bear in mind that the elementary states satisfy the standard properties of elementaryevents from the lassial Kolmogorov probability theory [11℄. Namely, eah random experimentresults in one and only one elementary event. Different elementary events are mutually exlusive.Note that the standard approah to quantum mehanis does not have suh an ingredient. Thisbeame an insurmountable obstale for appliation of the lassial probability theory to quantummehanis. Suh an obstale is absent within the approah used here. Therefore, there is no needfor reating some arti�ial quantum probability theory. Instead one an use the well-developedformalism of the lassial probability theory. Therefore, the following postulate appears to befairly natural. 7
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The ausality onept D.A. SlavnovPOSTULATE 5. The equivalene lass fjgjh orresponding to the quantum state Yjh an beequipped with the struture of a probability spae.Then, the mean value of the observable �A in the quantum state Yjh is given by the formulaYjh ( �A) = Zj2Yjh P�A(dj)jx ( �A); (3)where P�A(dj) = P(j : jx ( �A)� A+dA)�P(j : jx ( �A)� A);and P(j : jx ( �A)� A) is probability measure orresponding to the event j : jx ( �A)� A.In order for formula (3) to de�ne the quantum average, the probabilisti measure must satisfythe following postulates.POSTULATE 6. The funtional Yjh is linear over the algebraAandPOSTULATE 7. The funtional does not depend on the partiular hoie of x .One an show [5℄ that suh distribution atually exists.With the C�-algebra and a linear positive normalized funtional Yjh (�) de�ned over this al-gebra, we an onstrut a representation of the algebra A by using the Gelfand-Naimark-Segalanonial onstrution [12℄. In other words, we an onstrut Hilbert spaeH, in whih there is anoperator P( �A) ating over a spaeH that orresponds to eah element �A2A, while the expetationvalue hFjP( �A)jFi, where jFi 2H is the orresponding vetor in Hilbert spae � to the quantumaverage Yjh (�). This is the way the standard mathematial apparatus of quantum mehanis isreprodued.Thus, there are two paths leading to the same result. One an �x the algebra of observables, andbuild on it a set of elementary states orresponding to some quantum states. Then, one an endowthis set by the struture of a probability spae and, �nally, alulate the probabilisti averages.The alternative path is the following one. Fix a Hilbert spae, de�ne observables as linear op-erators in that spae, while quantum states are either vetors of that spae, or density matries. Theaverage values of observables are de�ned as the mathematial expetations of the orrespondingoperators with respet to either vetors of the Hilbert spae, or density matries.Usually the seond path turns out to be muh more onvenient from the pragmati point ofview. However, the �rst path has a better physial foundation. This allows one to reate a more orless intuitively lear piture of the quantum world. In partiular, our model allows one to presentan intuitively appealing interpretation of quantum phenomena [6℄, whose traditional interpretationlooks absolutely absurd from the lassial physis point of view.The list of suh phenomena inludes quantum partile sattering on a double-slit sreen, theEinstein-Podolsky-Rosen paradox [13℄, the delayed hoie experiment [14℄, and quantum telepor-tation [15℄.Referenes[1℄ N.N. Bogolioubov and D.V. Shirkov, Introdution to the Theory of Quantized Fields. World Si.,Singapore, 1982. 8
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