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1. Introduction

Negative results play important role in axiomatic QFT. They show that relation between as-
ymptotic and interacting fields is very nontrivial. The most important example of such results is
Haag’s theorem.

Here we consider another well-known result and show that it is possible to obtain the stronger
result at the same assumptions. Let us recall original statement [1]:

Theorem 1. If any local fieldϕ (x) is irreducible and

[ϕ (x),ϕ (y)] = A(x−y), (1.1)

then operatorA(x) is multiple of unit operator, that isϕ (x) is an asymptotic field.

First we show that, actually, the commutator in question can not be an operator depending on the
difference between one spatial coordinate in pointsx andy. Our result is most interesting in the
case of noncommutative theory [2], [3], precisely, in the case of space-space noncommutativity,
in which time commutes with spatial variables and, as a consequence, one spatial variable, sayx3,
commutes with others.

Let us recall that noncommutative quantum field theory (NC QFT) is defined by the Heisenberg-
like commutation relations between coordinates

[xµ ,xν ] = i θ µν , (1.2)

whereθ µν is a constant antisymmetric matrix.
In our proof we use the following general principles of axiomatic field theory:

i) Local commutativity condition (LCC);

ii) Irreducibility of the set of field operators.

For simplicity we consider the case of neutral scalar fields.
Local commutativity means that

[ϕ (x),ϕ (y)] = 0, if x∼ y. (1.3)

The conditionx∼ y in usual (commutative) theory means that

(x−y)2 < 0.

In noncommutative quantum field theory (NC QFT) LCC can be fulfilled with respect to commu-
tative variables only. The reason is that test functions, corresponding to noncommutative variables,
belong to the one of Gelfand-Shilov spacesSβ with β < 1/2 [4], which does not contain functions
with finite support and so corresponding field operators can not satisfy LCC. Thus in NC QFT we
have the following LCC:

[ϕ (x),ϕ (y)] = 0, if (x0−y0)
2− (x3−y3)

2 < 0. (1.4)
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Let us stress that our result is valid in any theory, where this condition is fulfilled.
Now let us recall the condition of irreducibility.

The set of field operatorsϕ (x) is irreducible if the bounded operator, which commutes with all
field operators, has to beCI, whereI is identical operator andC is some function.

Our proof is the modification of the classical proof given in the book [1].

2. Generalization of the Theorem 1

Let us prove that

Theorem 2. If
[ϕ (x),ϕ (y)] = A(x3−y3,X,Y), (2.1)

where we denote all other variables asX,Y, then

A(x3−y3,X,Y) = CI,

whereC is some function.

Proof Let us remind the Jacobi identity:

[ϕ (x), [ϕ (y),ϕ (z)]]+ [ϕ (y), [ϕ (z),ϕ (x)]]+ [ϕ (z), [ϕ (x),ϕ (y)]] = 0 (2.2)

If
(z0−y0)2− (z3−y3)2 < 0, (z0−x0)2− (z3−x3)2 < 0, (2.3)

then in accordance with LCC from Jacobi identity it follows that

[ϕ (z), [ϕ (x),ϕ (y)]] = 0. (2.4)

The conditions (2.3) are fulfilled if

x3 = λ +x′3, y3 = λ +y′3, x′3, y′3 are arbitrary, λ = (0,0,λ3,0) λ 2 →−∞.

So,A(x3−y3,X,Y), which we have in (3.1), is:

A(x3−y3,X,Y) = A(x′3−y′3,X,Y).

In accordance with eq. (2.4):

[ϕ (z), [ϕ (x),ϕ (y)]] = [ϕ (z),A(x3−y3,X,Y)] = [ϕ (z),A(x′3−y′3,X,Y)] = 0, (2.5)

wherez,x′ andy′ are arbitrary. So we see thatA(x′3−y′3,X,Y)] commutes withϕ (z) at arbitraryz.
Owing to irreducibility of the set of quantum field operators,[ϕ (x′),ϕ (y′)] = CI, whereC is

some function.
Thus we have proved that commutator[ϕ (x′),ϕ (y′)] has to be a function. It is known that

in this case any Wightman function〈ψ0,ϕ (x1), . . .ϕ (xn)ψ0〉 has to be some superposition of two-
point Wightman functions or one-point ones and so in this case the set of Wightman functions
cannot define any nontrivial theory.

Let us stress that our result is valid in a space of arbitrary dimensions.
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3. Generalization of the Theorem 2

Theorem 3. If

[ϕ (x),ϕ (y)] = A(x0−y0 +α(x3−y3),X,Y), α ∈ R is arbitrary, (3.1)

where we denote all other variables asX,Y, then

A(x0−y0 +α(x3−y3),X,Y) = CI,

C is some function.

Proof If |α | ≥ 1, then from LCC it follows that[ϕ (xα),ϕ (yα)] = 0, xα = x0+α~x, yα = y0+α~y.
Thus we can use the previous proof.

If | α | < 1, we have to use analytical properties of Wightman functions. Let us recall that
Wightman functions are analytical functions in tubesT−n : ν ∈ T−n if ν = ξ − i η , ξ is arbitrary,
η ∈V+, which means thatη2

0 −~η2 > 0 [1], [5], [6].
Now let us point out that ifx j ∼ x j+1, that is if(x j −x j+1)

2 < 0, then

W (x1, . . .x j ,x j+1, . . .xn) = W (x1, . . .x j+1,x j , . . .xn). (3.2)

Taking into account that the conditionx j ∼ x j+1 exists in some vicinity of pointsx j , x j+1, we obtain
that

W (ν1, . . .ν j ,ν j+1, . . .νn) = W (ν1, . . .ν j+1,ν j , . . .νn) if ν j ∼ ν j+1. (3.3)

Let us consider pointsξ j = 0, ξ j+1 = 0. Then(νi−νi+1)
2 = −η2

0 −~η2 < 0 asη ∈V+. It is
evident that alsoηα

i ∼ ηα
i+1, whereηα

i,i+1 = i (η0,α~η). Now we can use the previous proof, only
considering Jacobi identity in imaginary points.

Now let us proof that irreducibility of the set of operatorsϕ (x) implies that the setϕ (i x) is
irreducible as well.

Indeed, we have one-to-one correspondence between the set of operatorsϕ (x) andϕ (i x).
Let bounded operatorA commutes withϕ (x). We show that also[Aϕ (i x)] = 0∀x. In fact, if

for somex there exists vectorΦ such that

(Aϕ (i x)−ϕ (i x)A) Φ = Ψ 6= 0,

then using mapT ϕ (i x) = ϕ (x), we obtain thatT Ψ = 0,Ψ 6= 0. In accordance with one-to-one
correspondence between the setsϕ (x) andϕ (i x) only T 0= 0. We come to the contradiction. Thus
[Aϕ (i x)] = 0∀x. As the set of operatorsϕ (x) is irreducibleA = CI,C∈ C.

It is easy to show that as[ϕ (i x),ϕ (i y)] = CI, ∀x,y, C is some function, thenW (i x1, . . . i xn)
is some linear combination of two- or one-point Wightman functions in imaginary points. Using
the analytical properties of Wightman functions, we come to the conclusion thatW (x1, . . .xn) is
also a linear combination of two- or one-point Wightman functions. Thus the field in question can
be only a trivial one. The proof is completed.

If we consider space-space NC QFT, the same result is valid in respect with commutative
coordinates.
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4. Conclusion

It has been proved that commutator[ϕ (x),ϕ (y)] cannot be a function of linear combination
(x0−y0 +α(x3−y3),X,Y). This result is valid in space-space noncommutative quantum field
theory as well.
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