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Topological solitons are solutions to the classical fieldaipns whose existence and stability
are guaranteed by conservation of topological charge. Thelast soliton is met i1+ 1)—
dimensional scalar field theory with action
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whereg is the coupling constaht In what follows we assume weak coupling? < 1. If the

potentialV (@) has two degenerate minima andv, (Fig. 1a, solid line), the model (1) admits
soliton and antisoliton solutions interpolating betweea ininima, see Fig. 1b.
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Figurel: (a) PotentiaV(g); (b) soliton (S) and antisoliton (A) solutions.

In guantum theory soliton and antisoliton become certagrtiple—like” states obeying rel-
ativistic energy—momentum relation. In this respect they similar to perturbative excitations
representing quantum particles. Still, gft< 1 there is an essential difference between solitons
and perturbative excitations. Namely, the size of the Janliton configuration is set by the poten-
tial V(@) alone, while its masMs = Ma is proportional to the additional factor/@?, cf. Eq. (1).
At the same time, both mass and De Broglie wavelength of feative excitations are independent
of the coupling constarg. Due to this difference, solitons are non—perturbativeeotsj which caf
be described semiclassically while perturbative exatetiare not semiclassical.

In this talk we consider inclusive production of solitontigaaliton pair in collision of two
guantum particles. We propose general semiclassical métin@alculating the probability of this
process. Up to our knowledge, no method of this kind has esenIproposed before, cf. [1].

There are several qualitative arguments in literature {&fjrsg that the probability of soliton—
antisoliton pair production in two—particle collisionségponentially suppressed,

P(E)~AE)e FE/ )

whereE > 2Mgs is the energy of the procesB, > 0 is suppression exponent. From the physical
viewpoint suppression (2) is due to essential differendength scales of the initial and final states

1Substitutiong — g bringsg in front of non-linear terms of the potential.
2De Broglie wavelength Mg of the soliton is much smaller than its size.



Soliton—antisoliton production Dmitry Levkov

of the process. Namely, De Broglie wavelength of two initiafticles YE < 1/Msis much smaller
than the sizes of soliton and antisoliton in the final state.

The exponential form (2) hints that the probability of inddcsoliton pair production should
be calculable semiclassically. However, implementatibthe standard semiclassical technique
meets two obstacles. First, the initial state of the proteast semiclassical since it contains two
guantum particles. Second, soliton and antisoliton dtgach other and annihilate classically into
N ~ 1/g? particles. Thus, there is no potential barrier separatoiigos—antisoliton pair from the
particle sector, and the process itself cannot be treatpdtastial tunneling.

We solve the first problem by the method of Rubakov, Son angiakov® (RST) [3]. The
method is based on the conjecttithat the leading semiclassical exponErE) does not depend
on the initial-state parameters as long as the latter aresemoiclassically large. In particular,
F(E) is independent on the number of initial particsif N < 1/g?>. RST conjecture is used
for calculation of two—particle probability in the followg way. Consider inclusive probability of
soliton—antisoliton production from multiparticle state

PEN) =5 |(11SER) ~ AE,N)e FEN/T, ©)

I,
whereSis S-matrix, P= andBy are projectors onto initial states with fixed enefygnd multiplicity
N. Sums in Eqg. (3) run over all perturbative initial states\abthe vacuunv_ and final states
containing soliton—antisoliton pair. Atl > 1 the initial states in Eq. (3) are semiclassical. On
the other hand, RST conjecture implies thaNak 1/g? the multiparticle exponerft (E,N) does
not depend oM and therefore coincides with the two—particle exporfeti). In the intersection
of two regions 1<« N < 1/g? semiclassical methods and RST conjecture are both aplaicab
calculatingF (E,N) semiclassically and taking the limit
F(E)= lim F(EN). O

one obtains suppression exponErE) of the original two—particle process.

We solve the second problem by introducing potential balréween the perturbative states
and states containing soliton—antisoliton pair. Namelg, modify the potentiaV/ (¢) by adding
negative energy densitly—0p) to the vacuunv,, see Fig. 1b, dashed line. After modification
v_ andv,; become false and true vacua respectively, and the processlitufh—antisoliton pair
production turns into the process of false vacuum decay.attes process corresponds to tunneling
through the potential barrier [7], with the height of thedt@rgiven by the energy of critical bubble.
Whendp goes to zero the critical bubble turns into widely separat@idon—antisoliton pair, and
its energy tends to the kinematic thresholMgXor the soliton—antisoliton pair production.

After the above modifications the probability (3) can be glted by the standard semiclassi-
cal technique. Namely, at smaff the path integral for this probability is saturated by thddia—
point configurationp(x,t) € C satisfying the boundary—value problem in Fig. 2 [3]. In @adar,
@(x,t) solves the classical field equations on the contour in coxngabee plane, where the Eu-
clidean part of the contour corresponds to tunneling. Bampndonditions at — +oo are dictated

3See Refs. [4] for the alternative method.
4This conjecture has been checked in field theory [5] and ptavéhe context of quantum mechanics [6]. Presently
there are no results confronting this conjecture.
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Figure2: Semiclassical boundary value problem.

by initial and final states of the process: in the asymptatiare solution is real, while dt— —oo
its positive and negative frequency componemtanday are linearly related. Parametersand 6
in Fig. 2 are Lagrange multipliers with respect to enefggnd number of particleN; in what fol-
lows we parametrize solutions witle, N). After finding solution one computes the multiparticle
suppression exponent

F(E,N) = 2g°lm S¢| + boundary terms (5)

where the boundary terms represent initial— and final—statgributions.
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Figure3: Semiclassical solutions iB—N plane.

To summarize, we formulated a recipe to find the suppresskporeentF (E) of soliton—
antisoliton pair production in two—particle collisionsn®starts by describing false vacuum decay
in collision of N > 1/g? particles. To this end, one adds energy dengitgp) to the vacuunv,
and solves the boundary value problem in Fig. 2. Substgusiemiclassical solutiop(x,t) into
Eqg. (5), one computes the multiparticle exponEE,N). After that one takes two consecutive
limits g°N — 0, p — 0 and obtains the sought—for exponé&riN).

We illustrate the method by performing explicit calculaan the potential depicted in Fig. 1a,
where dashed and solid lines correspond to the capes 0 anddp = 0O respectively. We dis-
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Figure4: Semiclassical solutiong(x,t): (a) (3°E, g°N) ~ (5.0,3.2), (b) (9°E, g°N) ~ (7.9,2.9).

cretize [8] the boundary value problem in Fig. 2 and computamerically the exponerf (E,N),
Eqg. (5). We represent numerical solutions by pointsEir-N plane, see Fig. 3. Solution at
E = N = 0 corresponds to false vacuum decay with no particles innhmli state. This solu-
tion is nothing else but bounce [7]; it can be easily found adically. Solutions wittE, N > O are,

in fact, distorted bounces. The example of such solutiohasve in Fig. 4a. Wave packets in the
left part of the figure correspond to particles moving in thitial state; after collision wave packets
backreact on the “bounce” part of the solution.

At energies higher than two soliton masses transition nashachanges [9], cf. [10]. Physi-
cally this change is related to the fact titat= 2Mg is a kinematic threshold for soliton—antisoliton
pair production abp = 0. Thus, semiclassical solutions lat< 2Ms andE > 2Mg behave dif-
ferently in the limitdp — 0. We observe that solutions at high energies are differedged, see
Fig. 4b. Visually, these solutions are much smaller and da@hange much adp decreases.

We extrapolatd-(E,N) to N = 0 and obtain the two—particle exponefteE) at differentdp.
The graphs of the latter are plotted in Fig. 5, dashed line®e §&es that the graphs in Fig. 5 have
alimit 5p — 0 (solid line in Fig. 5) corresponding to the exponetiE).

Conclusion. We formulated the semiclassical method for computing tigeession exponent
of soliton—antisoliton pair production in collision of twighly energetic particles. We applied
this method to a particular model where the suppressionreqtovas computed numerically, see
Fig. 5, solid line. In this way we explicitly demonstratechttthe probability of the process is
exponentially suppressed, the suppression exponent pprgximately constant at high energies.
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Figure5: Two—particle suppression exponehRtE) at differentdp.
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