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Topological solitons are solutions to the classical field equations whose existence and stability
are guaranteed by conservation of topological charge. The simplest soliton is met in(1+ 1)–
dimensional scalar field theory with action

S=
1
g2

∫

dxdt

(

1
2
(∂µφ)2−V(φ)

)

, (1)

whereg is the coupling constant1. In what follows we assume weak coupling,g2 ≪ 1. If the
potentialV(φ) has two degenerate minimav− andv+ (Fig. 1a, solid line), the model (1) admits
soliton and antisoliton solutions interpolating between the minima, see Fig. 1b.
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Figure 1: (a) PotentialV(φ); (b) soliton (S) and antisoliton (A) solutions.

In quantum theory soliton and antisoliton become certain “particle–like” states obeying rel-
ativistic energy–momentum relation. In this respect they are similar to perturbative excitations
representing quantum particles. Still, atg2 ≪ 1 there is an essential difference between solitons
and perturbative excitations. Namely, the size of the (anti)soliton configuration is set by the poten-
tial V(φ) alone, while its massMS = MA is proportional to the additional factor 1/g2, cf. Eq. (1).
At the same time, both mass and De Broglie wavelength of perturbative excitations are independent
of the coupling constantg. Due to this difference, solitons are non–perturbative objects which can2

be described semiclassically while perturbative excitations are not semiclassical.

In this talk we consider inclusive production of soliton–antisoliton pair in collision of two
quantum particles. We propose general semiclassical method for calculating the probability of this
process. Up to our knowledge, no method of this kind has ever been proposed before, cf. [1].

There are several qualitative arguments in literature [2] stating that the probability of soliton–
antisoliton pair production in two–particle collisions isexponentially suppressed,

P(E) ≈ A(E)e−F(E)/g2
, (2)

whereE ≥ 2MS is the energy of the process,F > 0 is suppression exponent. From the physical
viewpoint suppression (2) is due to essential difference inlength scales of the initial and final states

1Substitutionφ → gφ bringsg in front of non–linear terms of the potential.
2De Broglie wavelength 1/MS of the soliton is much smaller than its size.
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of the process. Namely, De Broglie wavelength of two initialparticles 1/E ≤ 1/MS is much smaller
than the sizes of soliton and antisoliton in the final state.

The exponential form (2) hints that the probability of induced soliton pair production should
be calculable semiclassically. However, implementation of the standard semiclassical technique
meets two obstacles. First, the initial state of the processis not semiclassical since it contains two
quantum particles. Second, soliton and antisoliton attract each other and annihilate classically into
N ∼ 1/g2 particles. Thus, there is no potential barrier separating soliton–antisoliton pair from the
particle sector, and the process itself cannot be treated aspotential tunneling.

We solve the first problem by the method of Rubakov, Son and Tinyakov3 (RST) [3]. The
method is based on the conjecture4 that the leading semiclassical exponentF(E) does not depend
on the initial–state parameters as long as the latter are notsemiclassically large. In particular,
F(E) is independent on the number of initial particlesN if N ≪ 1/g2. RST conjecture is used
for calculation of two–particle probability in the following way. Consider inclusive probability of
soliton–antisoliton production from multiparticle states,

P(E,N) = ∑
i, f

|〈 f |ŜP̂EP̂N|i〉|
2 ≈ A(E,N)e−F(E,N)/g2

, (3)

whereŜis S–matrix,P̂E andP̂N are projectors onto initial states with fixed energyE and multiplicity
N. Sums in Eq. (3) run over all perturbative initial states above the vacuumv− and final states
containing soliton–antisoliton pair. AtN ≫ 1 the initial states in Eq. (3) are semiclassical. On
the other hand, RST conjecture implies that atN ≪ 1/g2 the multiparticle exponentF(E,N) does
not depend onN and therefore coincides with the two–particle exponentF(E). In the intersection
of two regions 1≪ N ≪ 1/g2 semiclassical methods and RST conjecture are both applicable;
calculatingF(E,N) semiclassically and taking the limit

F(E) = lim
g2N→0

F(E,N) , (4)

one obtains suppression exponentF(E) of the original two–particle process.
We solve the second problem by introducing potential barrier between the perturbative states

and states containing soliton–antisoliton pair. Namely, we modify the potentialV(φ) by adding
negative energy density(−δρ) to the vacuumv+, see Fig. 1b, dashed line. After modification
v− andv+ become false and true vacua respectively, and the process ofsoliton–antisoliton pair
production turns into the process of false vacuum decay. Thelatter process corresponds to tunneling
through the potential barrier [7], with the height of the barrier given by the energy of critical bubble.
Whenδρ goes to zero the critical bubble turns into widely separatedsoliton–antisoliton pair, and
its energy tends to the kinematic threshold 2MS for the soliton–antisoliton pair production.

After the above modifications the probability (3) can be calculated by the standard semiclassi-
cal technique. Namely, at smallg2 the path integral for this probability is saturated by the saddle–
point configurationφ(x, t) ∈ C satisfying the boundary–value problem in Fig. 2 [3]. In particular,
φ(x, t) solves the classical field equations on the contour in complex time plane, where the Eu-
clidean part of the contour corresponds to tunneling. Boundary conditions att →±∞ are dictated

3See Refs. [4] for the alternative method.
4This conjecture has been checked in field theory [5] and proved in the context of quantum mechanics [6]. Presently

there are no results confronting this conjecture.
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Figure 2: Semiclassical boundary value problem.

by initial and final states of the process: in the asymptotic future solution is real, while att →−∞
its positive and negative frequency componentsak andāk are linearly related. ParametersT andθ
in Fig. 2 are Lagrange multipliers with respect to energyE and number of particlesN; in what fol-
lows we parametrize solutions with(E, N). After finding solution one computes the multiparticle
suppression exponent

F(E,N) = 2g2ImS[φ ]+boundary terms, (5)

where the boundary terms represent initial– and final–statecontributions.
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Figure 3: Semiclassical solutions inE—N plane.

To summarize, we formulated a recipe to find the suppression exponentF(E) of soliton–
antisoliton pair production in two–particle collisions. One starts by describing false vacuum decay
in collision of N ≫ 1/g2 particles. To this end, one adds energy density(−δρ) to the vacuumv+

and solves the boundary value problem in Fig. 2. Substituting semiclassical solutionφ(x, t) into
Eq. (5), one computes the multiparticle exponentF(E,N). After that one takes two consecutive
limits g2N → 0, δρ → 0 and obtains the sought–for exponentF(N).

We illustrate the method by performing explicit calculations in the potential depicted in Fig. 1a,
where dashed and solid lines correspond to the casesδρ > 0 andδρ = 0 respectively. We dis-
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Figure 4: Semiclassical solutionsφ(x,t): (a) (g2E, g2N) ≈ (5.0,3.2), (b) (g2E, g2N) ≈ (7.9,2.9).

cretize [8] the boundary value problem in Fig. 2 and compute numerically the exponentF(E,N),
Eq. (5). We represent numerical solutions by points inE—N plane, see Fig. 3. Solution at
E = N = 0 corresponds to false vacuum decay with no particles in the initial state. This solu-
tion is nothing else but bounce [7]; it can be easily found numerically. Solutions withE, N > 0 are,
in fact, distorted bounces. The example of such solution is shown in Fig. 4a. Wave packets in the
left part of the figure correspond to particles moving in the initial state; after collision wave packets
backreact on the “bounce” part of the solution.

At energies higher than two soliton masses transition mechanism changes [9], cf. [10]. Physi-
cally this change is related to the fact thatE = 2MS is a kinematic threshold for soliton–antisoliton
pair production atδρ = 0. Thus, semiclassical solutions atE < 2MS andE > 2MS behave dif-
ferently in the limitδρ → 0. We observe that solutions at high energies are different,indeed, see
Fig. 4b. Visually, these solutions are much smaller and do not change much asδρ decreases.

We extrapolateF(E,N) to N = 0 and obtain the two–particle exponentsF(E) at differentδρ .
The graphs of the latter are plotted in Fig. 5, dashed lines. One sees that the graphs in Fig. 5 have
a limit δρ → 0 (solid line in Fig. 5) corresponding to the exponentF(E).

Conclusion. We formulated the semiclassical method for computing the suppression exponent
of soliton–antisoliton pair production in collision of twohighly energetic particles. We applied
this method to a particular model where the suppression exponent was computed numerically, see
Fig. 5, solid line. In this way we explicitly demonstrated that the probability of the process is
exponentially suppressed, the suppression exponent beingapproximately constant at high energies.
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Figure 5: Two–particle suppression exponentsF(E) at differentδρ .
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