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Strong coupling constant at NNLO from DIS data

Anatoly Kotikov∗†

Joint Institute for Nuclear Research, Russia
E-mail: kotikov@theor.jinr.ru

Vasily Krivokhizhin
Joint Institute for Nuclear Research, Russia
E-mail: Vasily.Krivokhizin@lhep.jinr.ru

Gonzalo Parente
Universidade de Santiago de Compostela, Spain
E-mail: gonzalo@fpaxp1.usc.es

Binur Shaikhatdenov
Joint Institute for Nuclear Research, Russia
E-mail: sbg@theor.jinr.ru

We discuss the results of our recent analysis [1] of deep inelastic scattering data onF2 structure

function in the non-singlet approximation with next-to-next-to-leading-order accuracy. The study

of high statistics deep inelastic scattering data providedby BCDMS, SLAC, NMC and BFP col-

laborations was performed with a special emphasis placed onthe higher twist contributions. For

the coupling constant the following valueαs(M2
Z) = 0.1167±0.0022(total exp. error) was found.

The XIXth International Workshop on High Energy Physics and Quantum Field Theory
8-15 September 2010
Golitsyno, Moscow, Russia

∗Speaker.
†The work was supported in part by RFBR grant No.10-02-01259-a. The work of GP was supported in part by the

grant Ministerio de Ciencia e Inovacion FPA2008-01177.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
Q
F
T
H
E
P
2
0
1
0
)
0
5
0

Strong coupling constant at NNLO from DIS data Anatoly Kotikov

1. Introduction

It is already a common knowledge that the accuracy of data forDIS structure functions (SFs)
allows one to studyQ2-dependence of logarithmic QCD-inspired corrections and those of power-
like (non-perturbative) nature independently (see for instance [2] and references therein). And this
aspect is crucial for the analysis to be performed within some well defined scheme.

In this contribution we present the results of our recent analysis [1] of DIS SFF2(x,Q2) carried
out over SLAC, NMC, BCDMS and BFP experimental data [3] at NNLO of massless perturbative
QCD. As in our previous papers [4, 5, 6] the functionF2(x,Q2) is represented as a sum of the
leading twistF pQCD

2 (x,Q2) and the twist four terms:

F2(x,Q
2) = F pQCD

2 (x,Q2)

(

1+
h̃4(x)

Q2

)

. (1.1)

As is known there are at least two ways to perform QCD analysisover DIS data: the first one
(see e.g. [7, 8]) deals with Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) integro-differential
equations [9] and let the data be examined directly, whereasthe second one involves the SF mo-
ments and allows performing an analysis in analytic form as opposed to the former option. In this
work we take on the way in-between these two latter, i.e. analysis is carried out over the moments
of SFFk

2 (x,Q2) defined as follows

MpQCD/twist2/...
n (Q2) =

∫ 1

0
xn−2 F pQCD/twist2/...

2 (x,Q2)dx (1.2)

and then reconstruct SF for eachQ2 by using the Jacobi polynomial expansion method [4, 10]. The
theoretical input can be found in the papers [6, 11].

2. A fitting procedure

The fitting procedure largely follows that used in [6]. With the QCD expressions for the Mellin
momentsMk

n(Q
2) analytically calculated according to the formulæ given above the SFFk

2 (x,Q2)

is reconstructed by using the Jacobi polynomial expansion method:

Fk
2 (x,Q2) = xa(1− x)b

Nmax

∑
n=0

Θa,b
n (x)

n

∑
j=0

c(n)
j (α ,β )Mk

j+2(Q
2) ,

whereΘa,b
n are the Jacobi polynomials anda,b are their parameters to be fitted. A condition im-

posed on the latter is the requirement of the error minimization while reconstructing the structure
functions.

Since a twist expansion starts to be applicable only aboveQ2 ∼ 1 GeV2 the cutQ2 ≥ 1 GeV2

is imposed on the experimental data throughout. The MINUIT program [12] is used to minimize
two variables

χ2
SF =

∣

∣

∣

∣

Fexp
2 −Fteor

2

∆Fexp
2

∣

∣

∣

∣

2

, χ2
slope =

∣

∣

∣

∣

Dexp −Dteor

∆Dexp

∣

∣

∣

∣

2

,

whereD = d lnF2/d ln lnQ2. The quality of the fits is characterized byχ2/DOF for the SFF2.
Analysis is also performed for the slopeD that serves the purpose of checking the properties of fits.

We use free normalizations of the data for different experiments. For a reference set, the most
stable deuterium BCDMS data at the value of the beam initial energyE0 = 200 GeV is used.
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Q2
min N of HTC χ2(F2)/DOF αs(90 GeV2) ± stat αs(M2

Z)

points

1.0 797 No 2.20 0.1767± 0.0008 0.1164
2.0 772 No 1.14 0.1760± 0.0007 0.1162
3.0 745 No 0.97 0.1788± 0.0008 0.1173
4.0 723 No 0.92 0.1789± 0.0009 0.1174
5.0 703 No 0.92 0.1793± 0.0010 0.1176
6.0 677 No 0.92 0.1793± 0.0012 0.1176
7.0 650 No 0.92 0.1782± 0.0015 0.1171
8.0 632 No 0.93 0.1773± 0.0018 0.1167
9.0 613 No 0.93 0.1764± 0.0022 0.1163

1.0 797 Yes 0.98 0.1772± 0.0027 0.1167

Table 1: αs(M2
Z) andχ2 in the case of the combined analysis (HTCs stands for higher twist corrections).

3. Results

Since the gluon distribution function is not taken into account in the nonsinglet approximation,
the analysis is substantially easier to conduct; hence the cut on the Bjorken variable (x ≥ 0.25)
imposed where gluon density is believed to be negligible. The starting point of the evolution is
taken to beQ2

0 = 90 GeV2. TheseQ2
0 values are close to the average values ofQ2 spanning the

corresponding data. The previous experience tells us that the maximal value of the number of
moments to be accounted for isNmax = 8 [4] (though we checkNmax dependence just like in the
NLO analysis) and the cut 0.25≤ x ≤ 0.8 is imposed everywhere.

In [6, 1] the cuts on the kinematic variableY = (E0 − E)/E0 have been imposed so as to
exclude BCDMS data with large systematic errors. HereE0 and E are lepton initial and final
energies, respectively. Upon excluding the set of data withlarge systematic errors considerably
higher values ofαs(M2

Z) are obtained and rather mild dependence of its values on the choice ofY
cut is observed. For more details we refer to [1, 6]. Once these cuts are applied, a full set of data
consists of 797 points.

To verify a range of applicability of perturbative QCD we start with analyzing the data without
a contribution of twist-four terms (which meansF2 = F pQCD

2 ) and perform several fits with the cut
Q2 ≥ Q2

min gradually increased. From Table 1 it is seen that unlike the NLO analysis the quality
of the fits starts to appear fairly good fromQ2 = 3 GeV2 onwards (at NLO, it starts atQ2 = 10
GeV2 [6]) . Then, the twist-four corrections are added and the data with the usual cutQ2 ≥ 1 GeV2

imposed upon is fitted. It is clearly seen that as in the NLO case (see [6]) here the higher twists do
sizably improve the quality of the fit, with insignificant discrepancy in the values of the coupling
constant to be quoted below.

The parameter values of the twist-four term are presented inTable 2. Note that these forH2

andD2 targets are obtained in separate fits by analyzing SLAC, NMC and BCDMS datasets taken
together. For illustrative purposes we visualize those forthe hydrogen data in Fig. 1, where the
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x h̃4(x) for H2 ± stat h̃4(x) for D2 ± stat

0.275 -0.183± 0.020 -0.197± 0.009
0.35 -0.149± 0.028 -0.171± 0.015
0.45 -0.182± 0.029 -0.033± 0.031
0.55 -0.236± 0.052 0.142± 0.057
0.65 -0.180± 0.135 0.295± 0.108
0.75 -0.177± 0.182 0.303± 0.158

Table 2: HTC parameter values obtained in NNLO analysis.
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Figure 1: Comparison of the HTC parameterh̃4(x) obtained at LO, NLO and NNLO for hydrogen data (the
bars indicate statistical errors).

HTCs obtained at NLO and NNLO levels are seen to be compatiblewith each other within errors.
We would like to note that the cut of the BCDMS data, which has increased theαs values (see

Fig. 1 in [1]) improves considerably agreement between perturbative QCD and experimental data.
Indeed, the HTCs, that are nothing else but the difference between the twist-two approximation (i.e.
pure perturbative QCD contribution) and the experimental data, are seen to become considerably
smaller at NLO and NNLO levels as compared with both the NLO higher twist terms obtained
in [7] and and the results of analysis obtained with noY -cuts imposed on the BCDMS data (see
Fig. 2).

4. Conclusions

In the paper [1] the Jacobi polynomial expansion method developed in [4, 10] was used to per-
form analysis ofQ2-evolution of DIS structure functionF2 by fitting all the existing to date reliable
fixed-target experimental data that satisfy the cutx ≥ 0.25. Based on the results of fitting, the QCD
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Figure 2: Comparison of the HTC parameterh̃4(x) obtained at LO, NLO and NNLO for hydrogen data
when noY cuts imposed on the BCDMS data.

coupling constant value at the normalization point was evaluated. Starting with the reanalysis of
BCDMS data by cutting off the points with large systematic errors it was shown [1, 6] that the val-
ues ofαs(M2

Z) rise sharply with the cuts on systematics imposed. The values ofαs(M2
Z) obtained in

various fits are in agreement with each other. An outcome is that quite a similar result forαs(M2
Z)

was obtained [1] in the analysis performed over BCDMS (with the cuts on systematics) and the rest
of the data, thus permitting us to fit available data altogether.

It turns out that forQ2 ≥ 3 GeV2 the formulae of pure perturbative QCD (i.e. twist-two
approximation accompanied by the target mass corrections)are enough to achieve good agreement
with all the data analyzed. The reference result is then found to be

αs(M
2
Z) = 0.1167±0.0008 (stat)±0.0018 (syst)±0.0007 (norm)

= 0.1167±0.0021 (total exp. error). (4.1)

Upon adding twist-four corrections, QCD (i.e. first two coefficients of Wilson expansion) and
the data are shown to be consistent with each other already atQ2 = 1 GeV2, where the Wilson
expansion begins to be applicable. This way we obtain for thecoupling constant atZ mass peak:

αs(M
2
Z) = 0.1167±0.0007 (stat)±0.0020 (syst)±0.0005 (norm)

= 0.1167±0.0022 (total exp. error). (4.2)

Note that the above values (4.1) and (4.2) are to some extent stable [13] under the application
of the “frozen” [14] and analytic [15] modifications of the strong coupling constant, which as a rule
lead to similar results (see [16]).

Note also that our results (4.1) and (4.2) forαs(M2
Z) are in good agreement with the world
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average value for the coupling constant presented in the review [17], 1

αs(M
2
Z) = 0.1184±0.0007. (4.3)

Concerning the contributions of higher twist corrections in the present work the well-known
x-shape of the twist-four corrections while going from intermediate to large values of the Bjorken
variablex is well reproduced.

A.K. is indebted to organizers for the possibility to present the talk which this paper is based
on.
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