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1. Introduction

The possibility of parity (P)- breaking via pseudoscalar condensation for sufficiently large val-
ues of temperature and/or chemical potential has been attracting much interest during last decade
to search it both in dense nuclear matter (in neutron/quark stars and heavy ion collisions at inter-
mediate energies) and in strongly interacting quark-gluon matter (“quark-gluon plasma” in heavy
ion collisions at very high energies). We note that at finite baryon density pion condensation was
conjectured by A. Migdal in [1] long ago . Recently signatures of local (C)P-parity violation have
been analyzed in hot nuclear matter [2]. Finally P violation might conceivably accompany the
transitions to open color phases[3] , but they are beyond the scope of our talk .

Parity breaking in QCD would lead to rather remarkable experimental signals [4] such as the
same in-medium resonance being able to decay into even and odd number of pions, the presence of
additional Goldstone bosons, changes in the nuclear equation of state, isospin breaking effects in
the pion decay constant and substantial modification of the weak decay constant Fπ ′ for massless
charged pions, giving an enhancement of electroweak decays. A most striking effect of parity
breaking could be the abnormal enhancement of dilepton production due to triggering of photon
and vector meson decays (see the talk by A.Andrianov and [5]).

In our talk we examine the interesting possibility of spontaneous parity breaking using effec-
tive Lagrangian techniques in the range of nuclear densities where the hadron phase persists and
quark percolation does not occur yet. Our effective Lagrangian is a realization of the generalized
linear σ model, including the two lowest lying resonances in each channel and this is the minimal
model where possibility parity breaking can be realized. We show that the parity breaking phase
persists in some finite domain in the µ−T plane.

Previously several approaches have been used to study QCD in extreme conditions: from
meson-nucleon [1, 6] or quark-meson [8] Lagrangians to models of Nambu-Jona-Lasinio type [9,
10]. However, for different reasons, the above mentioned hadronic models lack some essential
ingredient, namely, an additional degree of freedom responsible for a P-breaking effect.

The range of intermediate nuclear densities (from 3 to 10 times the usual nuclear density)
where we expect parity breaking to occur is of high interest as it may be reached both in heavy-ion
collisions [11] and compact stars [8].

2. A generalized sigma model for QCD

The conventional linear σ -model[13] contains a multiplet of the lightest isoscalar σ and
isotriplet pseudoscalar πa fields. Spontaneous chiral symmetry breaking emerges due to a non-zero
value for 〈σ〉 ∼ 〈q̄q〉/F2

π . In order to relate this model to QCD one has to choose a real condensate
for the scalar density, with its sign opposite to current quark masses. Adding a chemical potential
does not rotate the condensate in chiral space and does not trigger P breaking.

Thus too simple phenomenological models retaining only the lightest degrees of freedom are
not capable to explore all the different phases that the presence of manifest (C)P violation due to
the non-zero chemical potential opens.

The minimal generalization of σ model for QCD to explore the possibility of spontaneous
parity breaking (SPB) contains two multiplets of scalar/pseudoscalar fields H j = σ̃ jI+ iπ̂ j, j =
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1,2, with π̂ j ≡ π̃a
j τa where τa are Pauli matrices. We require an exact SU(2)L×SU(2)R symmetry

in the chiral limit. These two chiral multiplets represent the two lowest-lying radial states. Thus
the effective potential of this generalized σ model,

Veff =
1
2

local

{
−

2

∑
j,k=1

H†
j ∆ jkHk +λ1(H

†
1 H1)

2 +λ2(H
†
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2 +λ3H†
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+
1
2
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†
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†
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†
1 H2 +H†
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†
2 H2

}
+O(

|H|6

Λ2 ) (2.1)

contains 9 leading vertexes of dimension ≤ 4 with real constants [4]. The higher-order terms are
suppressed by inverse powers of the chiral symmetry breaking (CSB) scale Λ' 1.2 GeV.

Using the global invariance of the model we parameterize,

H1(x) = σ1(x)ξ 2(x) = σ1(x)exp
(

i
πa

1 τa

F0

)
; H2(x) = ξ (x)

(
σ2(x)+ iπ̂2(x)

)
ξ (x). (2.2)

The parities of σ2(x) and π̂2 are even and odd, respectively (in the absence of SPB). In these
variables the corresponding gap equations are,

2∆σ1 = 4λ1σ
3
1 +3λ5σ

2
1 σ2 +2(λ3 +λ4)σ1σ

2
2 +λ6σ

3
2 +ρ

2
(
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)
,
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1 σ2 +3λ6σ1σ
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2 +4λ2σ
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2 +ρ

2
(

λ6σ1 +4λ2σ2

)
, (2.3)

0 = ρ

(
−∆+(λ3−λ4)σ

2
1 +λ6σ1σ2 +2λ2σ

2
2 +2λ2ρ

2
)
, (2.4)

where the following notation has been introduced in anticipation of neutral pseudoscalar conden-
sate: 〈πa

1 〉= 〈π0〉δ 0a,〈πa
2 〉= ρδ 0a.

The above effective potential must exhibit the usual chiral symmetry breaking pattern at µ =

T = 0. For this to happen 〈σ1〉 must acquire a real and positive v.e.v. .
The set of gap equations may have several solutions for σ1 and σ2, but since we know that in

normal conditions QCD does not break parity, ρ must vanish. For the potential to be well defined
one takes λ2 > 0 and a sufficient (and necessary [4]) condition for the absence of SPB is,

(λ3−λ4)σ
2
1 +λ6σ1σ2 +2λ2σ

2
2 > ∆. (2.5)

3. Inclusion of chemical potential and temperature into the model

The baryon chemical potential µ is transmitted to the meson sector (in the leading order of
chiral expansion) via a local quark-meson coupling. In the large Nc limit one can neglect the
temperature dependence due to meson collisions and assume that the temperature T is induced with
the help of the imaginary time Matsubara formalism for Green functions - Matsubara frequencies
for quarks ωn = (2n+1)π/β with β = 1/kT .

We take the chiral multiplet to have local couplings with the quark fields as being H1. Thus µ

and T are transmitted to the boson sector by the term,

∆L =−(q̄RH1qL + q̄LH†
1 qR)−→−q̄σ1q, (3.1)
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where qL,R are constituent quarks.
After averaging over the constituent quarks, to the leading orders in chiral expansion, the first

gap Eq. (2.3) is modified in the hot and dense matter to,

2∆σ1 = 4λ1σ
3
1 +3λ5σ

2
1 σ2 +2(λ3 +λ4)σ1σ

2
2 +λ6σ

3
2 +ρ

2
(

2(λ3−λ4)σ1 +λ6σ2

)
+2N σ1A (σ1,µ,β ), N ≡

NcN f

4π2 , (3.2)

A (σ1,µ,β ) = 2
∫

∞

σ1

dE
√

E2−σ2
1

cosh(β µ)+ exp(−βE)
cosh(β µ)+ cosh(βE)

, (3.3)

where the Fermi distribution has been introduced. All the dependence on the environment is in the
function A which originates from the one-loop contribution to Veff.

At T = 0, the value of the effective potential at its minima is given by the compact expression,

Veff(µ) =−
1
2

∆

2

∑
j=1

(
σ j(µ)

)2
− 1

2
∆ρ

2(µ)−N

3
µ

(
µ

2−σ1(µ)
2
)3/2

θ

(
µ−σ1(µ)

)
. (3.4)

Thermodynamically the system is described by the pressure p and the energy density, ε . The
pressure is determined by the potential density difference with and without the presence of chemical
potential, d p =−dV ,

p(σ j(µ),µ)≡Veff

(
σ

0
j

)
−Veff

(
σ j(µ),ρ(µ),µ

)
, (3.5)

where the dependence of σ j and ρ(µ) on µ has been shown explicitly and σ0
j ≡ σ j(0). The

energy density is related to the pressure by ε = −p+NcµρB. The chemical potential is defined
as,∂ρBε = Ncµ, with the entropy and volume held fixed. Therefore ∂µ p = NcρB. The factor Nc is
introduced to relate the quark and baryon chemical potentials. Thus the relation between baryon
density, Fermi momenta and the chemical potential is for quark matter,

ρB =− 1
Nc

∂µVeff =
N f

3π2 p3
F =

N f

3π2 (µ
2−σ1(µ)

2)3/2. (3.6)

This set of identities provides a functional relation between ρB and µ .
The pressure is an increasing function of the density and vanishes at zero density. In turn,

infinite nuclear matter is stable implying zero pressure too. Therefore the phase diagram in the
p,ρB plane must necessarily exhibit a discontinuity (first order transition at some critical value µ∗).

The stabilization of nuclear matter requires not only attractive scalar forces but also repul-
sive ones (vector-mediated) [14]. Conventionally, the latter ones are associated to the interactions
mediated by the iso-singlet vector ω meson. Let us supplement our action with,

∆Lω =−1
4

ωµνω
µν +

1
2

m2
ωωµω

µ −gω q̄qq̄γµω
µq, (3.7)

with a coupling constant gω q̄q ∼ O(1/
√

Nc). In bosonization of QCD, in the quark sector the
time component ω0 interplays with the chemical potential. Let us assign a constant v.e.v. for this
component gω q̄q〈ω0〉 ≡ ω̄ , µ → µ + ω̄ ≡ µ̄ . Then µ̄ can be determined via the variation of the
extended Veff ,

µ̄−µ

Gω

=−NcρB(µ) =−
NcN f

3π2 (µ̄2−σ1(µ̄)
2)3/2. (3.8)
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A viable model of dense baryon matter must describe the phase transition to a stable bound state at
the usual density of infinite nuclear matter, to the so called “saturation point”.

The saturation point where nuclear matter forms is characterized by vanishing pressure. The
energy crossing condition p = 0 at µ̄∗ < σ0

1 ,σ
∗
j ≡ σ j(µ̄

∗) is given by,

2

∑
j,k=1

(
σ

0
j ∆ jkσ

0
k −σ

∗
j ∆ jkσ

∗
k

)
=

Nc

2
µ̄
∗
ρB(µ

∗)+GωN2
c ρ

2
B(µ

∗), (3.9)

where µ̄∗ is related to the physical value of µ∗ by Eq.(3.8). This relation represents the condition
for the existence of symmetric nuclear matter.

Taking this at face value we can derive a relation between µ∗ ' 300 MeV and σ∗1 ' 170 MeV:
pF =

√
(µ̄∗)2− (σ∗1 )

2 = 1.3 fm−1 = 250 MeV that corresponds to ρ0 = 0.13 fm−3.

4. The SPB phase transition

We shall consider from now on the solution corresponding to the most stable minima for
µ > µ∗ (the formation of nuclear matter at some critical value µ∗, details see in [12]).

The possibility of local SPB is controlled by the inequality (2.5). In order to approach a
SPB phase transition when the chemical potential is increasing we need to diminish it [4]. Let us
examine the possible existence of a region of µ where ρ 6= 0. Then,

(λ3−λ4)σ
2
1 +λ6σ1σ2 +2λ2

(
σ

2
2 +ρ

2
)
= ∆, (4.1)

and,
λ5σ

2
1 +4λ4σ1σ2 +λ6

(
σ

2
2 +ρ

2
)
= 0, (4.2)

where we have taken into account that σ1 6= 0. Together with (4.1) this completely fixes the relation
between the two v.e.v.’s of the scalar fields σ1,2 throughout the SPB phase independently of µ and
ρ .

Let us now determine the critical value of the chemical potential, namely the value µcrit where
ρ(µcrit) = 0,

λ6x2 +4λ4x+λ5 = 0, x =
σ2

σ1
. (4.3)

Once we find xcrit we can immediately calculate σ
±
1,2,

Then using Eq. (3.2) one derives the boundary of the P-violation phase,

N A (σ±1 ,µ,β ) = ∆−2λ1(σ
±
1 )2−λ5σ

±
1 σ
±
2 − (λ3−λ4)(σ

±
2 )2. (4.4)

Thus for any nontrivial solution σ
±
1,2 the P-breaking phase boundary exists. If the phenomenon of

P-violation is realized for zero temperature it will take place in a domain involving lower chemical
potentials but higher temperatures.

Once a condensate for π0
2 appears spontaneously the vector SU(2) symmetry is broken to U(1)

and two charged excited π ′ mesons are expected to possess zero masses. Quantitatively the mass
spectrum can be obtained only after kinetic terms are normalized.
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5. Conclusions

Let us summarize our main results. Parity violation seems to be quite a realistic possibility
in nuclear matter at moderate densities. We have arrived at this conclusion by using an effective
Lagrangian for low-energy QCD that retains the two lowest lying states in the scalar and pseu-
doscalar sectors. Salient characteristics of this phase would be the spontaneous violation of isospin
and the generation two additional massless charged pseudoscalar mesons. We have also examined
departures from the chiral limit, i.e. allowing for non-zero quark masses. This leads to rather inter-
esting results as in this case the usual pions are not exactly massless, but the new Goldstone bosons
appearing at the transition point to the parity violating phase are.

We also find a strong mixing between scalar and pseudoscalar states that translate spontaneous
parity violation into meson decays. The mass eigenstates will decay both in odd and even number
of pions simultaneously. Isospin violation can also be visible in decay constants.

There is a possibility of the occurrence of local parity breaking in colliding nuclei due to
generation of pseudoscalar, isosinglet or neutral isotriplet, background which is discussed in the
talk of A.A.Andrianov.
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