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1. Introduction

The pion elastic form factor atQ = 3 − 8 GeV is sensitive to the specific features of the onset of
the perturbative regime and opens the possibility to study subtle details of the pion structure. The
experimental study of the pion form factor at the lower part of this region will become available
with an upgrade of JLab in the next few years. Therefore it is now the right time to review the
theoretical understanding of this quantity. Several versions of the methodof QCD sum rules may
and have been applied to this problem. However, no conclusive results have been obtained and we
still have a strong discrepancy between the results from different versions of QCD sum rules [1, 2].
The goal of the presented work was to study the accuracy of the pion form factor obtained from
so-called local-duality (LD) version of QCD sum rules [3]. Let us brieflyremind the basic ideas
leading to the LD model.

2. Sum rule

The basic objects for sum-rule calculations of pion properties are the correlation functions

Π
(

p2) =
∫

〈

Ω
∣

∣T j(x) j†(0)
∣

∣Ω
〉

eipx dx,

Γ
(

p2
1, p2

2, q2) =
∫

〈

Ω
∣

∣T j(x1)J(0) j†(x2)
∣

∣Ω
〉

eipx1−ipx2 dx1 dx2. (2.1)

HereΩ is the physical vacuum;j(x) is a short-hand notation for the interpolating axial current
j5α(x) of the positively charged pion,〈Ω | j5α(0)|π (p)〉 = i pα fπ ; J(0) denotes the electromag-
netic currentJν(0). For brevity, we omit Lorentz indices. In QCD these correlators may be cal-
culated by applying the operator product expansion (OPE). Instead ofthe Green functions in the
Minkowski space (2.1), it is convenient the evolution operators in the Euclidean space, which
emerge after performing the Borel transformp2 → τ, the parameterτ being related to the Eu-
clidean time. The Borel transform leads to several improvements: (i) suppresses the contributions
of the excited states; (ii) improves the convergence of the perturbative expansion; (iii) provides the
necessary smearing required by quark-hadron duality. The Borel image of the two-point correlator
has the form

ΠOPE(τ) =
∫ ∞

0
ρpert(s)e−sτ ds + Πcond (τ), ρpert(s) = ρ0(s) + αs ρ1(s) + O(α2

s ). (2.2)

Hereρi(s) are the spectral densities of the two-point diagrams of the perturbation theory, Πcond(τ)

describes nonperturbative power corrections. Making use of the hadron intermediate states, for the
two-point correlator we obtain

Π(τ) = f 2
π e−m2

π τ + excited states. (2.3)

The first term in this expression corresponds to the pion contribution.
The double Borel transformp2

1,2 →
τ
2 of the three-point function has the form

ΓOPE(τ, Q) =
∫ ∞

0

∫ ∞

0
∆pert(s1, s2, Q)e−

s1+s2
2 τ ds1 ds2 + Γcond (τ, Q),

∆pert(s1, s2, Q) = ∆0(s1, s2, Q) + αs ∆1(s1, s2, Q) + O(α2
s ), (2.4)
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∆pert(s1, s2, Q) is the double spectral density of the three-point diagrams of the perturbation theory.
Γcond(τ, Q) describes power corrections. Making use of the hadron intermediate states gives

Γ(τ, Q) = Fπ(Q) f 2
π e−m2

π τ + excited states. (2.5)

The key assumption of the method of sum rules is theduality assumption which says that the
contribution of the excited states is dual to the high-energy region of the perturbative diagrams.
Using this assumption, the sum rules take the form in the chiral limit of the vanishing quark masses

f 2
π =

∫ s̄eff(τ)

0
ρpert(s)e−sτ ds +

〈

αs G2
〉

12π
τ +

176π αs 〈q̄q〉2

81
τ2 + · · · , (2.6)

Fπ(Q) f 2
π =

∫ seff(Q,τ)

0

∫ seff(Q,τ)

0
∆pert(s1, s2, Q)e−

(s1+s2)
2 τds1ds2

+

〈αs
π G2

〉

24
τ +

4π αs 〈q̄q〉2

81
τ2 (

13+ Q2 τ
)

+ · · · (2.7)

These relations are the standard relations for the extraction of the hadrondecay constants and form
factors in the method of QCD sum rules.

Let us focus on Eq. (2.7). We would like to study the form factor at largeQ. The form factor of
a bound state should decrease withQ; however, the power corrections of the r.h.s. are polynomials
in Q and thus rise withQ. So, Eq. (2.7) cannot be directly used at largeQ. There are two ways
for considering the region of largeQ: The first way is the resummation of power corrections, after
which the resummed power correction decrease withQ. This may be done in a model-dependent
way by making use of nonlocal condensates [2]. The second way is justto set the Borel parameter
τ = 0; then all power corrections vanish and the remaining perturbative partdecreases withQ. This
version of sum rules is called a local-duality (LD) sum rule [3]. In the LD limit one finds

f 2
π =

∫ s̄eff

0
ρpert(s)ds =

s̄eff

4π2

(

1 +
αs

π

)

+ O
(

α2
s

)

, (2.8)

Fπ(Q) f 2
π =

∫ seff(Q)

0

∫ seff(Q)

0
∆pert(s1, s2, Q)ds1 ds2. (2.9)

The double spectral densitiesρpert(s) and∆pert(s1, s2, Q) are given by the perturbation theory;fπ is
known from the experiments. So, if we fixseff(Q), the form factor may be calculated. The spectral
densities have the following properties: atQ → 0 the spectral densities of two- and three-point
functions are related to each other by the Ward identity

lim
Q→0

∆i (s1, s2, Q) = ρi(s1)δ (s1 − s2) . (2.10)

At Q → ∞ explicit calculations give:

lim
Q→∞

∆0(s1, s2, Q) ∼
1

Q4 , lim
Q→∞

∆1(s1, s2, Q) =
8π
Q2 ρ0(s1)ρ0(s2). (2.11)

For the pion form factor, two rigorous properties are known: The normalization condition related
to the current conservation

Fπ(0) = 1. (2.12)
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The asymptotic behavior at largeQ due to the QCD factorization theorem

Fπ(Q) =
8π f 2

π αs

Q2 + · · · . (2.13)

Obviously, if we set

seff(Q → 0) =
4π2 f 2

π
1 + αs

π
, seff(Q → ∞) = 4π2 f 2

π , (2.14)

then the form factor obtained from the LD sum rule (2.9) satisfies both of these rigorous properties.
The two values of theseff at large and at smallQ are not far from each other! So, it is easy to
construct an interpolation functionseff(Q) for all Q with the limiting values (2.14).

Now, we can formulate theLD model for hadron elastic form factors:1

(i) It is based on a dispersive three-point sum rule atτ = 0 (i.e. infinitely large Borel mass
parameter). In this case all power corrections vanish and the details of thenon-perturbative
dynamics are hidden in a single quantity - the effective thresholdseff(Q).

(ii) It makes use of a model forseff(Q) based on a smooth interpolation between its values at
Q → 0 determined by the Ward identity and atQ → ∞ determined by factorization. Since
these values are not far from each other, one believes the details of this interpolation to be
not essential. For instance, a self-consistent expression may be used [1]:

seff(Q) =
4π2 f 2

π

1 + αs(Q)
π

. (2.15)

Thus, the only non-perturbative input for the LD model is the pion decay constantfπ .
Obviously, the LD model is an approximate model which does not take into account the details

of the confinement dynamics, and it is important to understand its accuracy.Now, where this
accuracy may be tested?

The only property of theory relevant for this model is factorization of hard form factors. There-
fore, the model may be tested in quantum mechanics for the case of the potential containing both
the Coulomb and the confining interactions. The spectral representation for the form factor and the
decay constant in the LD limit are similar to those in QCD; the corresponding spectral densities
can be calculated from the two- and three-point diagrams of the non-relativistic field theory. To
probe the sensitivity of the LD model to the details of the confining potential, we shall consider
two different confining potentials

V (r) = −
α
r

+ Vcon f (r), Vcon f (r) = σ r (1) Vcon f (r) =
mω2 r2

2
(2) (2.16)

and make use of the parameters relevant for hadron physics. The parameters are chosen such that
the Schrödinger equation for both confining potentials leads to the same valueof decay constant
(i.e. Ψ(r = 0)): m = 0.35 GeV, ω = 0.5 GeV, σ = 0.168 GeV, α = 0.3. The exact form
factors as obtained from the solution of the Schrödinger equation are different in these two models;
however the LD model for the form factor, which depends only on the value ofα andΨ(r = 0) for
both models is the same. Comparing the exact form factors and the LD form factors allows us to
probe the accuracy of the LD model.

1Notice, however, that the model is not expected to work at small nonzero Q as the OPE is not applicable here.
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3. Numerical results

Fig. 1 presents our results for the potential model. The black lines give the results from the
LD model for the effective threshold and the corresponding form factor. The blue and the red lines
are the exact form factors obtained from the solution of the Schrödingerequation (Fig. Plot:1a) and
the corresponding exact thresholds which reproduce these form factors by the LD expression (2.9).
[The variablek is related to the variables, used above ass = 4(k2 + m2)]. Recall that the form
factor in our potential model behaves asF(Q2) ∼ 1/Q4 because we consider spinless quarks. The
lesson to be learnt from the potential model is the following:the exact threshold keff does not exceed
the LD threshold by more than 5% As Q increases, the accuracy of the LD approximation increases
rather fast, too. This conclusion does not depend on the details of the confining interaction.

Fig. 2 shows the analysis of the pion form factor in QCD. The black lines – theresults from
the LD model; the red lines represent our upper boundary for the threshold and the corresponding
form factor. According to the experience from the potential model we setthe upper boundary for
the thresholdseff by about 10% higher than the asymptotic threshold. We believe this estimate
to be quite reliable: the previous analysis of various correlators [5, 6] shows that the extraction
procedures in quantum mechanics and in QCD are very similar both qualitatively and quantita-
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Figure 1: (a) The exact vs LD form factors. (b) The exact vs LD effectivethresholds. Red lines - linear
confining potential; blue lines - harmonic oscillator confining potential; black lines - LD model.
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Figure 2: (a) Models for the effective threshold. (b) The corresponding pion form factor. Black lines -
the LD model. Red lines - our upper boundary. Green lines - theresults from the sum rule with non-local
condensates [2]. Data from [4].
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tively. Notice also that the LD model for the pion form factor agrees well withthe results from the
dispersion approach [7].

The problem is that the effective threshold recalculated in [2] to reproduce the results from the
sum rule with non-local condensates exceeds our upper boundary bymore than 10%. This might
be a consequence of adopting in Ref. [2] a procedure of fixing aτ-independent effective threshold
based on the maximal stability. According to the results of [5] this algorithm doesnot guarantee
the extraction of reliable values.

4. Summary and Conclusions

We studied the LD model for the elastic form factor which may be formulated in any theory
where the form factor at large momentum transfers satisfies the factorization theorem (i.e., any
theory containing both Coloumb and Confining interactions).

Our main conclusions are:

1. In the regionQ = 1 − 2 GeV, the exact effective threshold exhibits rapid variation withQ.
Depending on the theory (relativistic or non-relativistic), the error of theLD form factor in this
region may reach 30-40% level. In general, for a relativistic theory a smaller error is expected.

2. At Q > 2− 3 GeV, the LD model provides a good description of the pion elastic form factor –
with the accuracy better than 20%. Moreover, the accuracy increases rather fast withQ.

We point out that our prediction for the pion form factor is considerably lower than the pre-
diction of the approach based on the sum rule with non-local condensates. This discrepancy needs
clarification. Presumably [8], its origin might be traced back to the procedure of fixing theτ-
independent effective threshold in the method of sum rules with non-localcondensates based on
merely the Borel stabilty criterion. We are going to redo the analysis making useof the recently
formulated modifications of the sum-rule method based on theτ-dependent effective threshold [6].
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