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Evolution of Universe to modern IDM Ilya F. Ginzburga

1. Introduction

One of the widely discussed models for Dark Matter (DM) particles is the Inert Doublet Model
(IDM) [1]. The model contains "standard" scalar (Higgs) doublet ϕS, responsible for electroweak
symmetry breaking and masses of fermions and gauge bosons as in the Standard Model (SM), and
scalar doublet, ϕD, which doesn’t receive vacuum expectation value (v.e.v.) and doesn’t couple to
fermions. (Our notations are similar to those in the 2HDM with ϕ1 → ϕS, ϕ2 → ϕD.) More complete
version of this report is given in [2]. Here four degrees of freedom of the Higgs doublet ϕS are as
in the SM: three Goldstone modes become longitudinal components of the EW gauge bosons and
one mode becomes the Higgs boson hS. All the components of the scalar doublet ϕD are realized
as massive scalar D-particles: two charged D± and two neutral ones DH and DA. By construction,
they possess a conserved multiplicative quantum number and therefore the lightest particle among
them can be considered as a candidate for DM particle. Assuming that DM particles are neutral,
we have

MD± ,MDA ≥ MDH or MD± ,MDH ≥ MDA . (1.1)

Possible masses of D-particles are constrained by the accelerator and astrophysical data (see e.g. [3]).
Assuming that the current state of the Universe is described by IDM, we discuss possible

variants of the history of the phase states of Universe during its cooling down after inflation. In
some respects, this analysis can be considered as particular case of analysis [4], [5]. We use below
some results and notations from [4]-[6].

2. The Lagrangian

The electroweak symmetry breaking via the Higgs mechanism is described by the Lagrangian

L = L SM
g f +T −V +LY (ψ f ,ϕS) . (2.1)

Here, L SM
g f describes the SU(2)×U(1) Standard Model interaction of gauge bosons and fermions,

which is independent on the realization of the Higgs mechanism, T is the standard kinetic term for
two scalar doublets ϕS and ϕD and the potential V with these two scalars. The LY describes the
Yukawa interaction of fermions ψ f with only one scalar doublet ϕS in the same form as in the SM.

Potential. The potential must be Z2 symmetric in order to describe IDM. Without loss of
generality it can be written in the form with all real parameters1

V =−1
2

[
m2

11(ϕ
†
S ϕS)+m2

22(ϕ
†
DϕD)

]
+

λ1

2
(ϕ †

S ϕS)
2+

λ2

2
(ϕ †

DϕD)
2+λ3(ϕ †

S ϕS)(ϕ †
DϕD)+

+λ4(ϕ †
S ϕD)(ϕ †

DϕS)+
λ5

2

[
(ϕ †

S ϕD)
2+(ϕ †

DϕS)
2
]
, λ5 < 0 .

(2.2)

The IDM is realized in some regions of parameters of this potential. To study thermal evolution, we
will consider also other possible vacuum states of such potential, at another values of parameters.

1In the general Z2 symmetric potential the last term has a form
[
λ̃5(ϕ †

S ϕD)
2+λ̃ ∗

5 (ϕ
†
DϕS)

2
]
. The physical

content of theory cannot be changed by the global phase rotation ϕa → ϕaeiαa (a = S, D). Starting with an
arbitrary complex λ̃5 = |λ̃5|eiρ we select αS −αD = ρ/2+π/2, to get (2.2) with negative λ5 =−|λ̃5|.
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To make some equations shorter, we use the abbreviations:

λ345 = λ3 +λ4 +λ5, R =
λ345√
λ1λ2

. (2.3)

Discrete symmetries. This potential (2.2) is invariant under two discrete symmetry transfor-
mations of a Z2 type, called respectively S-transformation and D-transformation (here SM denote
the SM fermions and gauge bosons):

S : ϕS
S−→−ϕS, ϕD

S−→ ϕD, SM S−→ SM, (2.4)

D : ϕS
D−→ ϕS, ϕD

D−→−ϕD, SM D−→ SM. (2.5)

For the EW symmetric phase (with ⟨ϕS⟩ = ⟨ϕD⟩ = 0 this invariance results in the D-parity and
S-parity conservation in the processes involving only scalars and gauge bosons. The Yukawa term
violates S-symmetry, while it respects D-symmetry in any order of perturbation theory.

Positivity constraints. To have a stable vacuum, the potential must be positive at large quasi–
classical values of fields |ϕi| (positivity constraints), for an arbitrary direction in the (ϕS,ϕD) plane.
These conditions limit possible values of λi (see e.g. [7]). In terms of parameters (2.3) positivity
constraints which are needed in our analysis, can be written as

λ1 > 0 , λ2 > 0, R+1 > 0. (2.6)

3. Thermal evolution

Potential. Since the Hubble constant is small, we assume a statistical equilibrium at every
temperature T . In this approximation, at the finite temperature, the ground state of system is given
by a minimum of the Gibbs potential

VG = Tr
(

Ve−Ĥ/T
)
/Tr

(
e−Ĥ/T

)
. (3.1)

In the first nontrivial approximation and high enough temperature the obtained Gibbs potential
has the same form as the basic potential V (2.2), i. e. as the potential at zero temperature. The
coefficients λ ′s of the quartic terms in the potential VG and V coincide, while the mass terms vary
with temperature T , as follows

m2
11(T ) = m2

11 − c1T 2 , m2
22(T ) = m2

22 − c2T 2 ,

c1 =
3λ1 +2λ3 +λ4

12
+

3g2 +g′2

32
+

g2
t +g2

b
8

, c2 =
3λ2 +2λ3 +λ4

12
+

3g2 +g′2

32
.

(3.2)

Here g and g′ are the EW gauge couplings, gt ≈ 1 and gb ≈ 0.03 are values of the SM Yukawa
couplings for t and b quarks, respectively.

Generally each of coefficients c1 and c2 can be either positive or negative. However, in virtue
of positivity conditions (2.6) their sum is positive (even neglecting positive contributions from
gauge bosons W/Z and fermions),

c2 + c1 > 0 . (3.3)

.
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We will show later on that for a realization of the present inert vacuum with neutral dark matter
particle one needs λ4 +λ5 < 0 (5.4). Therefore, at R > 0 we have λ3 > 0. Taking into account that
λ5 < 0 (2.2), we obtain that c1 > 0, c2 > 0. At R < 0 there are no constraints on signs of c1,2:

R > 0 : c1 > 0, c2 > 0;

R < 0 : arbitrary signs of c1,2.
(3.4)

Yukawa interaction. The form of Yukawa interaction and values of Yukawa couplings don’t
vary during thermal evolution.

4. Extrema of the potential

Following [4] we first consider extrema of the potential (2.2) at arbitrary values of parameters.
The extrema conditions:

∂V/∂ϕi|ϕi=⟨ϕi⟩ = 0 , ∂V/∂ϕ †
i

∣∣∣
ϕi=⟨ϕi⟩

= 0 (i = S, D) (4.1)

define the extremum values ⟨ϕS⟩ and ⟨ϕD⟩ of the fields ϕS and ϕD, respectively. The extremum with
the lowest energy (the global minimum of the potential) realizes the vacuum state of the system.
Other extrema are saddle points, maxima or local minima of the potential.

For each electroweak symmetry violating extremum with ⟨ϕS⟩ ̸= 0, one can choose the z axis in

the weak isospin space so that ⟨ϕS⟩ ∼

(
0
vS

)
, with real, nonnegative vS (choosing a "neutral direc-

tion" in the weak isospin space). Therefore, the most general solution of (4.1) can be written as

⟨ϕS⟩=
1√
2

(
0
vS

)
, ⟨ϕD⟩=

1√
2

(
u

vD

)
. (4.2)

Neutral extrema. The solutions of (4.1) with u = 0 are called neutral extrema, as they respect
U(1) symmetry of electromagnetism. For these extrema the conditions (4.1) can be written as a
system of two degenerate cubic equations with four solutions:

vS(−m2
11 +λ1v2

S +λ345v2
D) = 0 , vD(−m2

22 +λ2v2
D +λ345v2

S) = 0 , v2
S, v2

D > 0 . (4.3)

This system has four solutions (here Ea are extrema energies):

EWsEWsEWs : EWsymmetric vD = 0, vS = 0, EEWs = 0; (4.4)

I1I1I1 : inert vD = 0, v2 ≡ v2
S =

m2
11

λ1
, EI1 =−m4

11
8λ1

; (4.5)

I2I2I2 : inert − like vS = 0, v2 ≡ v2
D =

m2
22

λ2
, EI2 =−m4

22
8λ2

; (4.6)

MMM : mixed


v2

S=
m2

11λ2−λ345m2
22

λ1λ2 −λ 2
345

, v2
D=

m2
22λ1−λ345m2

11

λ1λ2 −λ 2
345

,

EM =
−m4

11λ2+2λ345m2
11m2

22−m4
22λ1

8(λ1λ2 −λ 2
345)

.

(4.7)
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If one of these equations gives v2
S < 0 or v2

D < 0, the corresponding extremum is absent.
The energy differences between I1,2 and M extrema are

EI1 −EM =

(
m2

11λ345 −m2
22λ1

)2

8λ 2
1 λ2(1−R2)

; EI2 −EM =

(
m2

22λ345 −m2
11λ2

)2

8λ1λ 2
2 (1−R2)

. (4.8)

Charge breaking extremum. For u ̸= 0 the extremum violates not only EW symmetry but
also the U(1) electromagnetic symmetry, leading to the electric charge non-conservation. This
extremum can realize vacuum state only if λ4 + λ5 > 0 [9, 4]. We will see later on that at this
condition the DM particle can not be neutral, that contradicts (1.1).

5. Vacuum states

Below we describe briefly the properties of neutral extrema, listed above, provided in each
case that it realizes a true vacuum.

5.1 Electroweak symmetric vacuum EWsEWsEWs, ⟨ϕS⟩= ⟨ϕD⟩= 0⟨ϕS⟩= ⟨ϕD⟩= 0⟨ϕS⟩= ⟨ϕD⟩= 0

The electroweak symmetric extremum exists for all values of parameters of the potential (2.2).
This extremum is a minimum, realizing vacuum state, at

m2
11 < 0, m2

22 < 0. (5.1)

In this case, gauge bosons and fermions are massless, while scalar doublets ϕS and ϕD have masses
equal to |m11|/

√
2 and |m22|/

√
2, respectively.

5.2 Inert vacuum I1I1I1, ⟨ϕD⟩= 0⟨ϕD⟩= 0⟨ϕD⟩= 0

In the case when I1 extremum realizes vacuum, the Inert Doublet Model describes reality. The
standard field decomposition near I1 extremum has a form

ϕS =

 G+

v+hS + iG√
2

 , ϕD =

 D+

DH + iDA√
2

 , (5.2)

where G± and G are Goldstone modes, while hS and D = DH , DA,D± are scalar particles. Here the
Higgs particle hS interacts with the fermions and gauge bosons just as the Higgs boson in the SM.
D-particles don’t interact with fermions. Neither there are interactions of D-particles with gauge
bosons V of the type DiV1V2.

Symmetry properties. This vacuum is invariant under the D-transformation (2.5). Therefore
the D-parity is conserved. Hence, the lightest D-particle is stable, being a good DM candidate. (In
this state the S-symmetry (2.4) is broken.)

Allowed region of parameters. The inert extremum exists if only m2
11 > 0 (4.5). In accordance

with (4.5) and (4.6), the extremum I1 can be a vacuum only if m2
11/

√
λ1 > m2

22/
√

λ2. Additional
condition arises from a comparison of I1 and M extrema. In virtue of (4.8) at R2 > 1 the extremum
M can exist but its energy is larger than energy of I1 extremum – so that the extremum I1 realizes
vacuum. At R2 < 1 the inert extremum still can be a vacuum, in the case when the mixed extremum

5
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does not exist, i. e. if at least one of quantities v2
S, v2

D defined by eq. (4.7) is negative. Note, that due
to the positivity constraint 1+R > 0 (2.6) in the case when R2 > 1 we have R > 1. For the opposite
case, with R2 < 1, the quantity R can be either positive or negative.

Particle properties. The quadratic part of the potential written in terms of physical fields
hS, DH , DA and D± (5.2) gives the masses of scalars:

M2
hS
= λ1v2 = m2

11 , M2
D± =

λ3v2 −m2
22

2
,

M2
DA

= M2
D± +

λ4 −λ5

2
v2 , M2

DH
= M2

D± +
λ4 +λ5

2
v2 .

(5.3)

The requirement that lightest D-particle is a neutral one (1.1) results in the condition

λ4 +λ5 < 0. (5.4)

As in the standard 2HDM, scalars DH and DA have opposite P-parities but since they don’t
couple to fermions, there is no way to assign to them a definite value of P-parity. However, their
relative parity does matter and for example, vertex ZDHDA is allowed while vertices ZDHDH and
ZDADA are forbidden. Since λ5 < 0 (2.2) the "scalar" DH is lighter than "pseudoscalar".

5.3 Inert-like vacuum I2I2I2, ⟨ϕS⟩= 0⟨ϕS⟩= 0⟨ϕS⟩= 0

The inert-like vacuum I2 looks as "mirror-symmetric" to the inert vacuum I1. The interactions
among scalars and between scalars and gauge bosons in both cases are identical in form with the
change ϕS ↔ ϕD. The only difference between I2 and I1 is given by the Yukawa interaction.

Main formulae for this state are similar to those for the vacuum I1 with obvious replacements.
The corresponding field decomposition is given by

ϕS =

 S+
SH + iSA√

2

 , ϕD =

 G+

v+hD + iG√
2

 , (5.5)

with one Higgs particle hD and four S-particles: SH , SA, S±.
Symmetry properties. The inert-like vacuum I2 violates D-symmetry (2.5). Moreover, here

S-parity is also violated by the Yukawa interaction (in contrast to the D-parity in the inert vacuum).
Allowed regions of parameters. The inert-like extremum exists only for m2

22 > 0. It can be
vacuum if m2

11/
√

λ1 < m2
22/

√
λ2. For R2 > 1 there are no additional demands. If R2 < 1 inert-like

extremum can be a vacuum only if at least one of quantities v2
S, v2

D, defined by eq. (4.7), appears to
be negative. Both these conditions are similar to those for the inert vacuum I1.

Particle properties. The masses of the Higgs boson hD and S-scalars are given by (cf. (5.3))

M2
hD

= λ2v2 = m2
22 , M2

S± =
λ3v2 −m2

11
2

,

M2
SA

= M2
S± +

λ4 −λ5

2
v2 , M2

SH
= M2

S± +
λ4 +λ5

2
v2 .

(5.6)

The Higgs boson hD couples to gauge bosons just as the Higgs boson of the SM, however it
does not couple to fermions at the tree level. The S-scalars do interact with fermions. All fermions,
by construction interacting only with ϕS with vanishing v.e.v. ⟨ϕS⟩= 0, are massless. (Small mass
can appear only as a loop effect.) Here there are no candidates for dark matter particles.

6
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5.4 Mixed vacuum MMM, ⟨ϕS⟩, ⟨ϕD⟩ ̸= 0⟨ϕS⟩, ⟨ϕD⟩ ̸= 0⟨ϕS⟩, ⟨ϕD⟩ ̸= 0

The mixed extremum M violates both D- and S-symmetries. In this vacuum we have massive
fermions and no candidates for DM particle, like in the SM. The decomposition around the mixed
vacuum looks as follows:

ϕS =

 ρ+
S

vS+ρS+iχS√
2

 , ϕD =

 ρ+
D

vD+ρD+iχD√
2

 , (5.7)

where the ρ+
S and ρ+

D lead to two orthogonal combinations G+ and H+, while ρS and ρD (χS and
χD) – to two orthogonal combinations h and H (G and A), respectively. There are here five Higgs
bosons - two charged H± and three neutral ones: the CP-even h and H and CP-odd A.

Allowed regions of parameters. In accordance with (4.7) and (4.8) the mixed extremum is
global minimum of potential, i. e. vacuum, if and only if v2

S > 0, v2
D > 0 and R2 < 1. For v.e.v.’s

squared given by eqs. (4.7) the latter conditions can be transformed to the relations between mass
parameters m2

11 and m2
22:

at 1 > R > 0 : 0 < R
m2

11√
λ1

<
m2

22√
λ2

<
m2

11

R
√

λ1
;

at 0 > R >−1 :
m2

22√
λ2

> R
m2

11√
λ1

,
m2

22√
λ2

>
m2

11

R
√

λ1
.

(5.8)

Particle properties. Masses of charged and axial scalars together with mass matrix for CP-
even scalars M are (see, e.g. [6, 4])

M2
H± =−λ4 +λ5

2
v2 , M2

A =−v2λ5
(
v2 = v2

S + v2
D
)
, M =

(
λ1v2

S λ345vSvD

λ345vSvD λ2v2
D

)
. (5.9)

The masses of the neutral CP-even Higgs bosons are given by eigenvalues of this mass matrix.
The extremum can be minimum only if both diagonal elements of mass matrix and its deter-

minant are positive, i. e. λ1λ2v2
Sv2

D(1−R2)> 0, in agreement with the above mentioned conditions.
It means also that in the case if mixed extremum is minimum, it is global minimum – vacuum.

Couplings of the physical Higgs bosons to fermions and gauge bosons have standard forms as
for the 2HDM, with the Model I Yukawa interaction.

6. Evolution of phase states of the Universe

In this section we consider possible phase history of the Universe, leading to the inert vacuum
I1 today, based on the thermal evolution described in sec. 3. To summarize properties of different
vacua and to classify all possible ways of evolution of the Universe we will use phase diagrams in
the (µ1(T ), µ2(T )) plane, where

µ1(T ) = m2
11(T )/

√
λ1, µ2(T ) = m2

22(T )/
√

λ2 . (6.1)

Let us remind (sect. 3) that in our approximation during cooling down of Universe parameters
λi are fixed, while mass parameters m2

ii vary. These variations result in modification of vacuum

7
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state and a possible change of its nature. Possible types of evolution depend on value of parameter
R (2.3) and are depicted in the figures 1, 2 and 3. The possible current states of Universe are
represented in these figures by small black dots P = (µ1, µ2). Since currently we are in the inert
phase, we have2 µ1 > 0 for each point P (see sect. 5.2). The parameter µ2 can be both positive
(points P1 and P3) and negative (points P2, P4 and P5).

In accordance with (3.2) a particular evolution leading to a given physical vacuum state P is
represented by a ray, that ends at a point P. Arrows on these rays are directed towards a growth of
time (decreasing of temperature). The direction of the ray is determined by parameters (cf. (3.2))

c̃1 = c1/
√

λ1, c̃2 = c2/
√

λ2, c̃ = c̃2/c̃1. (6.2)

According to (3.2), for c̃ > 0 in the initial state of
Universe (T → ∞) m2

11 < 0 and m2
22 < 0, i. e. the initial

phase state of the Universe is electroweak symmetric.
If c̃ < 0 in the initial state of Universe either m2

11 or
m2

22 is positive, i. e. the initial state of Universe is

R c̃ initial state of Universe
> 0 > 0 EWs
< 0 > 0 EWs

< 0 EWv

electroweak-symmetry violating 3 – EWv. Taking into account (3.4) the list of opportunities is
presented in the Table here.

For different possible positions of today’s point P we consider typical evolutions for different
possible values of parameter c̃. In figures below all representative rays are shown; they are labeled
by two numbers, with the first one corresponding to the label of the final point P.

6.1 The case R > 1R > 1R > 1

I1

I2

EWs

µ1

µ2

P1

P211

12

21

X

Figure 1: R > 1 case.

Phase diagram for this case is presented in Fig. 1. It
contains one quadrant with EWs phase and two sectors,
describing the I1 and I2 phases. These sectors are separa-
ted by the phase transition line µ1 = µ2 (thick black line).
Two typical positions of today’s state are represented by
points P1 (µ2 > 0) and P2 (µ2 < 0). Since (according to
(3.4)), both c̃1, c̃2 > 0 (c̃> 0), all possible phase evolutions
are represented by rays 11 and 12 for the today’s point P1
and by a ray 21 which leads to the today’s point P2.

Ray 11: c̃ > µ2/µ1 > 0c̃ > µ2/µ1 > 0c̃ > µ2/µ1 > 0. The Universe started from the EWs state and after the second-order
EWSB transition at m2

11(T ) = 0, i. e. it has entered to the present inert phase I1 at the temperature

TEWs,1 =
√

m2
11/c1 =

√
µ1/c̃1 . (6.3)

Ray 12: 0 < c̃ < µ2/µ10 < c̃ < µ2/µ10 < c̃ < µ2/µ1. The Universe started from the EWs state. Then it went through
the EWSB second-order phase transition into the inert-like phase I2 at m2

22(T ) = 0, i. e. at the
temperature

TEWs,2 =
√

m2
22/c2 =

√
µ2/c̃2. (6.4)

2We distinguish present day values of parameters µi and their values µi(T ) at some temperature T .
3Such opportunity is not ruled out [10], but it contradicts a key idea of modern approach – the initial state

of Universe has high symmetry which is broken at cooling down. In this sense such opportunity is unnatural.
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The next transition is the phase transition from the inert-like phase I2 into the today’s inert phase I1

at the point R, where µ2(T ) = µ1(T ), i. e. at the temperature

T2,1 =
√
(µ1 −µ2)/(c1 − c̃2) . (6.5)

That is the first-order phase transition with the latent heat given by

QI2→I1 = T2,1 (∂EI2/∂T −∂EI1/∂T )T=T2,1
= (µ2c̃1 −µ1c̃2)T 2

2,1/4 . (6.6)

Ray 21: µ2 < 0µ2 < 0µ2 < 0. The Universe started from EWs state and after the second-order EWSB
transition at the temperature (6.3) has entered the today’s phase.

6.2 The case 1 > R > 01 > R > 01 > R > 0

I2

I1
EWs

M

µ2

µ1

P3

P4
31

32

41

Figure 2: 1 > R > 0 case.

The phase diagram for this case – Fig. 2 is obtained
from that for previous case (Fig. 1) by adding in the up-
per right quadrant the new sector – the mixed phase M, de-
scribed in accordance with (5.8) by equation

0 < Rµ1 < µ2 < µ1/R. (6.7)

As before, since R > 0 we have c̃ > 0.
Since currently we are in the inert vacuum, the possible

today’s states are of type of points P3 and P4, for which

µ2 < Rµ1. (6.8)

All possible phase evolutions are represented by three rays
in Fig. 2, with rays 31 and 32 having the today’s endpoint P3 while the ray 41 is pointing P4.

For the rays 31 and 41, phase evolutions are as for the rays 11 and 21, respectively. New
situation appears for the ray 32.

Ray 32: 0 < c̃ < µ2/µ10 < c̃ < µ2/µ10 < c̃ < µ2/µ1. The Universe started from the EWs state. Then at the temperature
given by (6.4) it went through the EWSB second-order phase transition into the inert-like phase I2.
At the subsequent cooling down the Universe goes through the mixed phase M into the present inert
phase I1. The second-order phase transitions I2 → M and M → I1 happened at the temperatures

Tphtr :
T2,M =

√
(µ1 −Rµ2)/(c̃1 −Rc̃2),

TM,1 =
√

(Rµ1 −µ2)/(Rc̃1 − c̃2) .
(6.9)

In accordance with equations in sect. 5, at the transition point I2 → M masses of SH and h vanish,
while at the transition point M → I1 masses of h and DH become 0. At small distance from the
transition point with temperature Tphtr these masses grow as a function of the temperature T as
M2

a = Aa|T 2 −T 2
phtr|, with different coefficients Aa.

6.3 The case 0 > R >−10 > R >−10 > R >−1

The phase diagram is presented in Fig. 3. In this case, as follows from (5.8), the mixed phase
M region is realized in a wider region than in Fig. 2, even beyond an upper right quadrant of this
plane, namely:

µ2 > µ1/R, µ2 > µ1R. (6.10)
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I2

I1EWs

M

51

52

53

54

P5

µ2

µ1

Figure 3: 1 > R > 0 case.

Since currently we are in the inert vacuum (µ1 > 0), for the
today’s point P5 we have µ2 < Rµ1 (µ2 < 0). New oppor-
tunities appear due to larger freedom for temperature coef-
ficients ci, as in accordance with (3.4) in this case c̃ can be
negative.

All possible phase evolutions leading to the point P5 are
represented in Fig. 3 by four rays 51, 52, 53 and 54.

The ray 51 with c̃ > 0 describes similar evolution as
rays 21 and 41. New are rays 52, 53 and 54 (at c̃ < 0) with
common feature, which is a lack of electroweak symmetry
in very early stages of the Universe.

Ray 52: c̃1 > 0, c̃2 < 0, c̃ > µ2/µ1c̃1 > 0, c̃2 < 0, c̃ > µ2/µ1c̃1 > 0, c̃2 < 0, c̃ > µ2/µ1. Here a high-temperature state of the Universe is the
inert-like vacuum I2. With cooling down the Universe goes through electroweak symmetric phase
EWs into the present I1 phase. The second-order phase transitions I2 → EWs and EWs → I1

happened, respectively, at the temperatures

T2,EWs =
√

µ2/c̃2 , TEWs,1 =
√

µ1/c̃1 . (6.11)

Ray 53: c̃1 > 0, c̃2 < 0, c̃ < µ2/µ1c̃1 > 0, c̃2 < 0, c̃ < µ2/µ1c̃1 > 0, c̃2 < 0, c̃ < µ2/µ1. Here a high-temperature state of the Universe is an
inert-like vacuum I2. With cooling down the Universe passes through the mixed phase M into the
present I1 phase. The phase transitions I2 → M and M → I1 are of the second order; they happened
at the temperatures given by eqs. (6.9).

Ray 54: c̃1 < 0, c̃2 > 0c̃1 < 0, c̃2 > 0c̃1 < 0, c̃2 > 0. For this ray the Universe stays in the inert vacuum I1 during the
whole evolution.

7. Results and discussion

Main results. The most important observation we made in this paper is as follows:
If current state of the Universe is described by IDM, then during the thermal evolution the Universe
can pass through various intermediate phases, different from the inert one. These possible inter-
mediate phases contain no dark matter, which appears only at the relatively late stage of cooling
down of the Universe.

We find that in the considered approximation the thermal evolution of Universe can be studied
effectively in the (µ1,µ2) plane, at fixed values of quartic parameters λi. Different types of such
evolution represented as directed rays depend crucially on two parameters: R (2.3), describing the
allowed for various vacua regions of the (µ1,µ2) plane, and c̃ (6.2), determining the direction of
rays. The first one depends only on the ratios between coefficients of quartic part of potential λi,
while the second depends both on mentioned parameters λi and on the known gauge and Yukawa
couplings.

The starting point of evolution of Universe to the present day inert phase state can be either
electroweak symmetric (EWs) state (if c̃ > 0) or electroweak symmetry violating state (at c̃ < 0). A
complete set of possible ways of evolution of the Universe can be summarized as follows (symbol
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I or II over arrows corresponds to the type of phase transition):

EWs II−→


I1 (rays 11, 21, 31, 41, 51)

I2

{
II−→ M II−→ I1 (ray32)

I−→ I1 (ray 12)

 : c̃ > 0

EWv :
I2

II−→

{
EWs II−→ I1 (ray 52)

M II−→ I1 (ray 53)

}
.

I1 → I1 (ray 54)

 : c̃ < 0

(7.1)

To find what scenario of evolution is realized in nature, one should measure all parameters of
potential. The program how to measure these parameters at LHC and ILC is under preparation.

Outlook.
A. Extra phase transitions at lower temperature than EWSB temperature (and especially first

order phase transition at the evolution like ray 12) can influence for baryogenesis even stronger
than transformation of standard second order EWSB transition into the first order one due to term
ϕ 3T [11]. Moreover, in contrast to the standard picture, the considered scenarios allow for the
phase transition to the current inert phase at relatively low temperature, giving new starting point
for calculation of a today’s abundance of the neutral DM components of the Universe and other
phenomena.

B. In this paper we calculated thermal evolution of the Universe in the very high temperature
approximation, i. e. for T 2 ≫ |m2

ii|. The most interesting effects are expected at lower tempera-
tures, where more precise calculations are necessary. The simplest expected modifications of the
presented description are:

1. Appearance of cubic terms like ϕ 3T [11]. These terms are important near phase transition
point, as they can transform some second-order phase transition into the first-order transition.

2. The parameters become depend on temperature in more complicated way than that given
by (3.2). Therefore, the rays, depicted thermal evolutions in Figs. 1, 2 and 3, can become
non-straight. The bending of these rays can be different in different points of our plots and
at different λi. It can give possible spectrum of phase evolutions even reacher that discussed
above.

However, we expect that the general picture will not change too much.
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