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1. Introduction

The shock gravitation waves can be obtained by Lorentz transformations in the ultrarelativistic
limit of the stationary solutions of classical gravitation theory [1]. At 1987 G. ’t Hooft [2] proposed
to use the Aichelburg-Sexl shock wave [1] as ultrarelativistic particle moving in Minkowski space-
time. The problem of shock waves construction in different metrics is related with consideration of
ultrarelativistic particles collision models in these metrics. Shock waves in (anti) de Sitter ((A)dS)
space-time have been constructed in [3], [4] and used to describe ultra relativistic particles colli-
sions [5], [6] in these backgrounds. Subtleties of obtaining shock waves in dS space are discussed
in [7].

The goal of the present paper is to get shock waves in the Friedmann-Robertson-Walker (FRW)
metric

dsy = —dt* 4 a*(t)(dx* + dy* + dz?). (1.1)

Our starting point is the McVittie metric [8]
2

( _“)zdt2+a2(t)(1+u)4 (dx* +dy* +dz*), where (1.2)

1

(1+u)

b=3 ’Z) , r=+/x2+y2+72, misaparameter (1.3)
a r

ds* = —

by choosing a(t) = e we can get the Schwarzschild-de Sitter metric.
For McVittie metric (1.2) with a(z) =" the Hubble parameter H = 4_ ? [9]. The Ricci scalar
a
1 i
R=12H?>+ 61+‘1‘le . If u =1, then we have singularity, which can be interpreted such as cos-

mological Big Bang singularity. Note, that if # — oo, the metric (1.2) reduces to the Schwarzschild
black hole of mass m [10].

In the present paper we construct the shock wave in FRW space-time with a(r) = ¢”. In Sec-
tion 2 we consider relations between coordinates of five-dimensional (5D) Minkowski space-time
on non-stationary hyperboloid and FRW space-time. In Section 3 we apply the small mass approx-
imation to the McVittie metric with a(7) = ¢". In Section 4 we make boost of the McVittie metric in
the small mass approximation. The boosted metric has a divergence and in Section 5 we consider
this divergence in the generalized function setting. The shock wave metric is presented in Section
6. In Section 7 we shortly summarize our results.

2. Coordinates relations
Let us remind, that in the five-dimensional (5D) Minkowski space-time
dSty = —dZ3 +dZ} +dZ3 + dZ5 + d7Z3, (2.1)
the stationary hyperboloid

— LA+ 75+ 75473 = A% = const (2.2)
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is 4D de Sitter space-time.

This relation can be generalized for FRW case. The explicit coordinate transformations, which
show the equivalence between a four-dimensional spatially flat cosmology and an appropriate sub-
manifold in the flat 5D Minkowski space-time, have been presented in [11].

In the present Section we consider the analog to the de Sitter metric (2.1) with non-stationary
hyperboloid condition

~ZE+ I+ 23+ 23+ 75 = b (1) (2.3)

and FRW metric (1.1) with
a(t) =1". (2.4)

We suppose that coordinates related by the expressions:

2

Z= alt)— 5 ((;)) a7 +2), (2.5)
2

Zo= ra()+ ;Z((;)) —% ()2 +y%+22),

Zi=a(t)x, Zpy=a(t)y, Zz3=alt)z.

Substituting (2.5) to (2.1) we get the following condition to () and b() :

da(t) b(t)\* . . da(t)db(t)b(t) |
—( - (t)) R P A R (2.6)
For considering case (2.4), from (2.6) we obtain 5?(¢) :
2 r?
P =) 2.7)

3. McVittie metric in the small mass approximation

Let us consider the small mass approximation of (1.2) with (2.4). Let m is a small parameter.
To zero and first orders in m? the coefficients of (1.2) are as follows:

(1-p)?

s~ l—dp, (1+p) ~1+4u. (3.1)
(14u)
Thus we can consider
ds* = —(1 —4p)de* +a*(t)(1 +4u) (dx* + dy* +dz?)  or (3.2)
ds* = ds§+4u(ds§ +2dr*). (3.3)

Such as da(t) = nt"~'dt and (2.7), dt* can be represented by the form:

(daft))?

(3.4)
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According to (2.5) we have the following expressions for d¢> and :

(d(Zo +Z4))2 _m
Rnn—2)(-Z+ 22+ T

dr* =

Il
_
w

Thus, the metric (3.3) can be considered in the plane coordinates (2.5):

2m 2d(Zo+7Z4)? )
ds* = dS3y + ——  dS?
M Ip < M2 (n=2)(-Z3+Z +Z)!

4. Boost

Consider the Lorentz transform in 5D Minkowski space-time:
1
V1=

The hyperboloid condition (2.3) is invariant under the Lorentz transformations

Zy = ’}/(Zo +le), 7z = }/(Zl —I-VZ()), Y=

A7 ZF =73+ 7} + 77 and bP(t) =D(P).
Let us apply the Lorentz transform (4.1) to metric (3.6):

2m

d(Y(Zo+vZy) +Z4)?

dsy = dS3,,+

S — (dS%M +2
y\/y2(vzo +2)* 4+ 7253+ 73

where dSsy = —dZ} +dZ? +dZ3, i = my.

The ultrarelativistic limit Y — oo, v — 1 to (4.3) is

diny d(Zo+7,)?

n*(n(n— 2))(—23 —i—ZI-z —&-Zf)”—l

In the next section we consider the following limit
iyd(Zo+Z1)?
lim riyd(Zo+21)
T PR+ 22+ B+

in the generalized function meaning.

5. Regularization

For consideration of the limit lim

y—>oo / /YZUZ +X2

\/yz(zo V2 B2 (nz(n(n— (=25 + 2 +Z7)m !

Y—wo/\/m /f’U\ /fU’ v—m/\/m

).

3.5

(3.6)

4.1

4.2)

4.3)

4.4)

(4.5)

U)dU, we can use the following trick:
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Examine the last integral. It is evidently that

Ncxices il R res / Jer
5.1
/1 YU+ X2 /1 YU+ X2 YU+ X2
We can just write
lim / — £(0)]dU — / FO=1O) (5.2)
Yoo \/72U2+X2 U]
Direct calculation gives that
/ 0)dU y2+y\/ 24+X2 £0). 5.3
/2U2—|—X2 _}, + 7V P+ X2 )

Using the Taylor series for large 7y in logarithm argument

N 40 s SR 5.4)
"y +YV Y X X2’ '

we can write

lim / U)dU — f(0)Iny? | = X2+/m<1> FU)AU +6()
Yo W 4 S NI v
where
oo 1 —1 oo
1 _ [ fU)-f(0) 1 1
— U)dU = | =22 qU — f(U)AU + | — f(U)dU 55
[ ()., 7@ [T [ e [grow 69
or
. Y X2 1

6. Shock wave
After the regularization we have the gravitational waves metric
ds; =dS3,+F(0)8(0)d(0)*, m=miny’, U=2Z+Z7Z, (6.1)

where

F(U)= D) =-OV+Z3+723+73, V=202 6.2)
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Conclusively, the shape of shock wave in 5D Minkowski space-time on non-stationary hyperboloid
is
4m

O @ A AT

(6.3)

Consider metric (6.1) in cosmological coordinates. Suppose that initially, before boost, we had
some symmetry Z) = Z; = Z3.
Applying the Lorenz transform (4.1) to Z;, Z,, Z3 we obtain

V2 +vZ) =72 = 73. (6.4)
From here we get
By - (7
@) =a*{@)l or a = z( ), (6.5)
- 12 -
where b*(f) = b*(t) = ( ) and / can has the following forms
n(n—
i:)z+3(1+f%ry~2+22)—yiz (6.6)
2 2y’ ’
~ Y N 5 y
I[=%+-(1+2+25%) - — 6.7
x+2( +5+25) 27 (6.7)
~ - v ) 2 Z
[ =X+ (145 +27)——. (6.8)
2 Y
- + 1 1+7 -1
Accordingly, we obtain that U = = <)Z+ +r2 > , P =243+
\/n(n—=2)I
Thus, the wave shape in cosmological coordinates has the form:
4in

7. Summarizing

It is proposed to use the boosted McVittie metric such as model of ultrarelativistic particle in
the Friedmann-Robertson-Walker space-time with a(¢) = #". The shock wave corresponding ultra-
relativistic particle in the Friedmann-Robertson-Walker space-time is constructed.

The authors thank to Andrey Bagrov for discussions.
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