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Hadron Structure and Form Factors

1. Introduction

Lattice QCD simulations are currently being performed with dynamical degenerate u- and
d- quarks with a mass close to their physical value as well as the strange quark, using a number
of different discretization schemes with the most common being Wilson-improved, staggered and
chiral fermions. Furthermore, simulations at several lattice spacings and volumes are becoming
available, enabling a comprehensive study of lattice artifacts. The masses of low-lying hadrons
have been computed and extrapolated to the continuum limit using large enough lattice sizes to
ensure that volume effects are smdll P]. These calculations show agreement with experiment
and therefore pave the way for evaluating other phenomenologically interesting quantities beyond
these masses.

Several collaborations, using dynamical quarks with pion mass down to about 300 MeV, have
calculated the pion electromagnetic (EM) form fact8y; ivhich is obtained from the matrix ele-
ment(z" (p')[Ju| 7" (p)) = (Pu + P},)Fr(0?), whereg? = (p' — p)? = —Q?. Based on vector dom-
inance, lattice data are fitted to the fofp(Q?) = (1+ <r2>Q2/6)*l to extract the mean squared
radius, which is shown in Fidl. As can be seen, there is an increase in the valu(ezgnfat small
pion massm;. An accurate extraction afr?) benefits from evaluating the form factor at small
values ofQ? accomplished by using twisted boundary conditions (b.c.). In a recent calculation,
ETMC combined twisted b.c. and the so called ‘one-end’ trick to incorporate the all-to-all propa-
gator and improve statistics. Using simulations with two degenerate light qudyks 2) at two
lattice spacings and two volume§ fhe assessment of cut-off and volume effects was carried out.
Lattice results orf; obtained with pion masses in the range of 300 MeV to 500 MeV, are extrap-
olated to the physical point using NNLO chiral perturbation theory (PT). The resulting form factor
is shown in Fig2 [4] and it is in agreement with experiment.
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Figure 1: The pion mean square radius as a function ofFigure 2: F, extrapolated to the physical pion
m2 obtained using simulations wit; = 2 twisted mass mass (red band) using NNLO chiral PT com-
quarks. pared to experiment (blue band).

As simulations with quark masses close to the physical value become available, the study of
resonances and decays of unstable particles becomes an important isspem&ken width has
been studied by several groupg.[Considering at* 7~ system in thé = 1-channel, the P-wave
scattering phase shifi1 (k) in infinite volume is related via Lischer’s relation to the energy shift in
a finite box. Using\; = 2 twisted mass fermions (TMF) and considering the center of mass frame
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and two moving frames one extracts the phase shift at different values of the energy, shown in

2
Fig. 3. From the effective range formula tén (k) = gg;‘r" ﬁ wherek = | /E2,,/4— m2
R™—CM

2 3
one determineMg and the coupling,z, and then extracts the width usihg = gg;;” % where
R

ke = 1/M3/4—m2. The results on the width as a functionrof are shown in Fig4 [6].
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Figure 3: The p-meson phase shift ah, = Figure 4: Thep-meson width folN; = 2 twisted
308 MeV for a lattice oL = 2.8 fm. mass fermions as a function k.

Having reproduced the low-lying hadron spectruin?, 7, 8], the masses of excited states can
be studied using e.g. variational metho@s Furthermore, one can go beyond masses and consider
form factors (FFs) and generalized parton distributions (GPDs) that probe hadron structure. The
characterization of nucleon structure, in particular, is considered a milestone in hadronic physics
and many experiments have been carried out to measure nucleon FFs and structure functions. Ex-
periments on nucleon FFs started in the 50s. A new generation of experiments using polarized
beams and targets are yielding high precision data spanning @fgenges. Therefore, nucleon
FFs serve as a further benchmark for lattice QCD. FFs provide ideal probes of the charge and mag-
netization distributions of the hadron as well as a determination of its shape in analogy to similar
studies in e.g. deuteron and other nuclei.
Non-relativistically the form factor can be related
to the density distribution via

F(t?) = [ d*e " < ylp(R)|y >,
In Fig. 5 we show the intrinsic charge density contours
of a spin-zero nucleus showing deformation revealed
through measurements of transition densities using
electron scattering.
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Figure 5: Tomographic view of the zero-spin de-
formed nucleu$®Gd derived from its rotational
bands using electron scattering.

In what follows we will review the status of lattice QCD calculations on baryon form factors
and nucleon generalized parton distributions.
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2. Nucleon Generalized Form Factors - Definitions

In this section, we briefly define the quantities for which results are presented. High energy
scattering can be formulated in terms of light-cone correlation functions. Considering one-particle
stategp’) and|p), GPDs are defined by, 11]:

A/2
ig | don-A(na)

1 pdA =
Frx &) = [ 5@ (PIW(-An/2r 2+ y(An/2)lp),

whereP = (p'+ p)/2,& = —n-q/2, x is the momentum fraction, aniis a light-cone vector with

P-n=1.

There are three different types of operators, depending on the chdice of
Considering nucleon states these are “Handbag” diagram
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Expansion of the light cone operator leads to a tower of local twist-2 operﬁ#ﬁ?s*‘”, related to
moments. The diagonal proton matrix elemefie’r (x)|P), measured in deep inelastic scattering,
are connected to the parton distributiayig), Aq(x), 6g(x). The twist-2 operators are defined by
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whereq = q; + 0,Aq = q; —q;, 09 = ot + ., and the curly brackets represent a symmetrization
over indices and subtraction of traces. The off-diagonal matrix elements extracted from deep virtual
Compton scattering can be written in terms of generalized form factors (GFFs), which contain both
form factors and parton distributions:

n

_ iotheq,, _
(N(P, )[04 N(p,9)) = tu(p/,€) [ > (Am,i(qz)y{“+Bn+17i<q2>"’ 9 )qﬂl...qﬂ'
i=0,even

Pt P 4 modn, 2)Cn+1,o(q2)miq{’“‘q“l - q““}] un(p.s) (2.1)
N
and similarly for&y,, (in terms ofAi(0?), Bi(6?)) and G, ouv (in terms of AL, Bl CT andD]).

ne n
We list the following special cases:
e n = 1: Ordinary nucleon form factors:

1 1
Auole?) = Fu(?) = [ dxHX &), Buold?) = Fo(e?) = | oxE(x &.)

. 1 5 T
Auol?) = Calef) = | dxFi(x &.), Buole?) = G(cf) = | axE(c&.f).
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where in the case of the EM curreff, = y(x)y, y(x), the nucleon matrix element is written in the
form un(p',S) [?’u Fr(0?) + MFz(qz)} un(p,s). The DiracF; and Pauli, FFs are related to the

2my

electric and magnetic Sachs FFs via the relati@sg®) = F1(g?) — (Zr‘ﬂ;)ze(qz) andGy (q?) =
F1(g?) + F2(g?). For the axial vector current] = 1[7(X)’}’u}’5%a y(X) the nucleon matrix element is

of the formun(p/,9) [y“ysGA(qz) + %Gp(qz)} SUN(P,9).

* Ano(0), Anp(0), Al (0) are moments of parton distributions, e{g)q = A(0) and(x)aq = Azo(0)

are the spin independent and helicity distributions. Knowing these quantities one can evaluate the
quark spin,J; = 3[A20(0) + B2o(0)] = 3AZ4+ Lq and investigate the fraction of the spin carried by
quarks and its contribution to the total spin via the nucleon spin sumjwesASq+Lq+Jg, as

well as the momentum fraction carried by gluons via the momentum sum(xife= 1 — Axg(0).

3. Lattice evaluation

In order to extract the matrix elements connected to GFFs we need to evaluate three-point
correlators and compute the renormalization of the operators involved. Despite recent progress on
the evaluation of disconnected loops, most lattice calculations of GFFs do not take into account
disconnected contributions. Therefore, in what follows, we consider iso-vector operators for which
such contributions are zero in the isospin limit. For one-derivative operators, mixing with lower di-
mension operators is avoided by symmetrizing over the Lorentz indices and making them traceless:
The study of cut-off and finite volume effects in a systematic way has just begun for baryon GFFs.
These are more difficult to assess since chiral expansions that describe such dependencies are not
as developed as in the light meson case. The presence of more uncertainties in the chiral expansion
combined with the larger statistical noise, which for the nucleon two-point function increases like
%ﬁ; ~ elMm—3m:/2) /\/N, make the extrapolation of these quantities to the physical point much
more demanding. In this review we will focus on: i) Nucleon form factors and lower moments
using dynamical simulations with pion masg ~ 500 MeV and spatial lattice length~ 2 fm
and ii) theN-A system in order to determine the complete set of coupling constants needed in
chiral expansions. Other topics relevant to hadron structure, such as the strange nucleon FFs, hy-
peron, Roper and nucleon negative parity FFs, distribution amplitudes and transverse momentum
dependent parton distributions can be found in REf] fnd in contributions to this volume.

e Three-point functions: For the extraction of matrix elements of local operators we need the

evaluation of two-point and three-point functions defined by o
§= -7
G(p.t) =S € Pry, (Ju(%e,t1)Ip(0)) < @y ™
X (Zy,ty5) o — — ] (i, t:)
G (M, p.at) =y e ™ P, (Ju (R tr) O* (X 1)J5 (%, 1)) ~ -
Xs X

Only the displayed connected diagram is evaluated, which, for most current applications, is done
by using sequential inversion “through the sink” fixing the sink-source separgtiet;, final
momentump andr - projection matrices. Smearing techniques are crucial for improving ground
state dominance in three-point correlators and thus keeft as short as possible. We stress that

it is important to ensure that the time separatips tj used is sufficiently large by performing the
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calculation at a bigger time separation and checking the consistency of the results. The generalized
eigenvalue method can further improve identification of the ground st8tapd enlarge the upper
range of accessibl@?-values [14].
e Renormalization constants:Most collaborations use non-perturbative renormalization. Us-
ing a momentum dependent souréé|[one evaluates
a8 al?

S'p =y > e PV uay) . Gp =1 ¥ e PrY(u(x)(2) 7 (2.2)d(Z)d(y)) (3.1)

V X7y X7yﬂZ7Z(

with the amputated vertex functions givenibgp) = (S*(p)) "1 G(p) (§(p))*and_# determines

the operator, e.g. 7 (z.7) = 6213/{“ D v} would correspond to the local vector current. The Z-
factors can be determined in the RIOM scheme by imposing the following conditions

Zo = 5Tr(S(p) 1SO(p)

_ 1 _
= o 2o o), =1 62)

p2=p

to extract the renormalization factafg andZ,. These conditions are imposed in the massless the-

ory and therefore a chiral extrapolation is needed. The mass-dependence is very weak for the vector
and axial vector operators. This is demonstrated in Fig. 6 for the case of the one-derivative vector.
the axial-vector operators usimgg = 2 TMF [16]. Results onz, andZ, as a function of ap)?

are shown in Fig. 7 where plateaux are improved after subtract{ag)-terms perturbativelyl[7].

Using the RI-MOM scheme but with a momentum independent source, the RBC-UKQCD Col-
laborations made a comparison between perturbative and non-perturbative determination of the
renormalization constants and found that results¥d_q [18] with perturbative renormalization

are lower bringing them in agreement with LHPC's results, which used perturbative renormaliza-
tion [19]. It is therefore important to compute the renormalization constants non-perturbatively.
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Figure 7: 2y andZa with perturbative subtraction
of 0'(a?)-terms forN; = 2 TMF [17].

Figure 6: Mass dependence of the renormalization
constant for vector and axial vector one-derivative
operators foNs = 2 TMF [16].

o Cut-off effects: The nucleon axial chargg, the isovector momentum fractienXx >, gq=
A0(0) and helicity fraction(X)ay—ad = AZO(O) are calculated directly @? = 0 requiring no fits.
We can examine their dependence on the lattice spacing by obtaining these quantities at a given
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value of the pseudoscalar mass in units®fIn Fig. 8 we show results at three lattice spacings
usingNs = 2 TMF. As can be see(a?)-terms are small and, allowing a linear dependence, yields
consistent results to those obtained with a constant fit. This is also true for the nucleon isovector
anomalous momen,, Dirac and Pauli radii? andr2 that require fits to the EM form factors.
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Figure 8: Left: ga, (X)u—d, and(X)au—nag; Right: the nucleon anomalous magnetic momenthe Dirac ra-
diusr? and Pauli radius3 timesxk, as a function ofa/ro)2. The red line is the result of fitting to a constant;
the blue one is a linear fit. The results are obtained uling 2 TMF [20].
We therefore conclude that cut-off effects are smallfer 0.1 fm for ¢'(a)-improved actions and
that one can use continuum chiral perturbation theory to extrapolate to the physical limit.

e Finite volume corrections: In Fig. 9 we compare results @a, (X)y_q and(X)ay_adg COM-
puted on different lattice sizes as a functiomg.

12 : : : : The observations are: i) Accurate lattice data
ol 9, o® | by LHPC using domain wall valence quarks on
staggered sea (hybrid) fon, ~ 350 MeV with
08 9w g 2 1 1 Lm, = 4.5 andLm, = 6.2 show no volume ef-
06 L i fects; ii) TMF results form,; ~ 300 MeV with
sl 1500, ® >Tl< | Lm, = 3.3 andLm;, = 4.3 are consi.stent; iii)
o lamer ez s O lover 241 m st | Results for(x)y_q using Cloyer ferrTons from
v - X DWF N,541 Lo 25 QCDSF form; ~ 270 MeV withLm; = 3.4 and
0.0 I i . i Lm, = 4.2 are consistent, wheregg differs by
.00 .05 .10 15 .20

about a standard deviation; iv) RBC-UKQCD
results with domain wall fermions (DWF) with
Figure 9: ga, 3(X)y g and%(x)Au,Ad using TMF R0}, Lm; = 3.9 andLm,; = 5.7 show no volume ef-
Clover [21], hybrid [19] and DWF [L§]. fects for(X)y_q and (X)au_ad [18].

m_? (GeV?)

Within the current statistical uncertainties this comparison, therefore shows that volume effects on
< X>_gand< x>a,_pg are negligible foLm;, < 3.3. Forga volume effects of about one standard
deviation are seen farm,;~3.4 and pion mass below 300 MeV and therefore larger lattices keeping
Lm; ~ 4 may be needed.

Comparing the isovector nucleon EM FFs as a functio®oat m; ~ 300 MeV we also find
consistent results farm,; = 3.3 andLm; = 4.3. A similar behavior is also observed for the nucleon
axial FFGa(Q?) whereas the induced pseudoscalar@&FQ?), which has a pion pole behavior,
may suffer from larger finite volume corrections at I@%-values p2].
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4. Results on nucleon form factors

Having examined cut-off and volume effects we compare results from various collaborations
computed with dynamical fermions far~ 0.1 fm! andLm; ~ 3.3.

¢ Nucleon axial charge: The axial charge is well known experimentally. Since it is deter-
mined atQ? = 0 there is no ambiguity associated with fitting t@é-dependence of the FF. In
Fig. 10 we show recent lattice results using TMF, DWF and a hybrid action of DWF on a staggered
sea, all of which are renormalized non-perturbatively. As can be seen, there is a nice agreement
among different lattice discretizations and no significant dependence on the quark mass down to
aboutm; = 260 MeV.
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Figure 10: Left: Lattice data orga usingNs = 2 TMF [20] (a = 0.089 fm: filled red circles foL. = 2.1 fm

and filled blue squares fdr = 2.8 fm; a = 0.070 fm: filled green triangles fdr = 2.2 fm; a = 0.056 fm:

purple star forL = 2.7 fm and open yellow square far= 1.8 fm), Ny = 2+ 1 DWF [23] (crosses for
a=0.114 fm andL = 2.7 fm) andN; = 2+ 1 using DWF and staggered se&] (a = 0.124 fm: open
orange circles foL = 2.5 fm and open cyan triangle far= 3.5 fm). The physical point is shown by the
asterisk. Right: Volume corrected TMF results extrapolated to the continuum limit together with the fit using
HBxPT (blue band). The band bounded by the lines is the resulting fit to the TMF data shown on the left.

To illustrate the size of lattice artifacts and obtain a valugét the physical point, we use
TMF results P2]. The volume corrected?f] data are extrapolated t@= 0 using three lattice
spacings, namelg= 0.089 fm, Q070 fm and 0056 fm, at two values of the pseudoscalar mass, by
fitting to a constant. For intermediate masses we use data at the two coarser lattices. The continuum
volume-corrected results are shown in Fi@. Chiral extrapolation using one-loop heavy baryon
chiral perturbation theory (HBPT) in the small scale expansion (SSE}|[with three fit param-
eters produces a value gf = 1.12(8) at the physical point, which is lower than the experimental
value by about a standard deviation. The large error is due to the strong correlation between the
A axial chargegaa and the counter-term involved in the fit. Therefore, a lattice determination of
daa Will allow a more controlled chiral extrapolation. Fitting the raw lattice data produces the band
shown by the dotted lines. Therefore one observes that, although the continuum volume-corrected
results are closer to experiment, the largest uncertainty is due to the chiral extrapolation and at the
physical point the values obtained using the raw and continuum volume-corrected lattice data are
consistent.

1We note that results by the LHPC using a hybrid action feve0.124 fm.
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o Nucleon form factors: Recent lattice results on the EM isovector and axial FFs are shown in
Fig. 11. We observe a nice agreement among lattice results, in particul&f@?) andGa(Q?).
However, bothGg (Q?) andGa(Q?) decrease witl)? less rapidly than experiment. We note that
a good description of th€@’— dependence for botBe (Q?) andGy (Q?) is provided by a dipole
form using the lattice-computga—meson mass. Lattice results GB(QZ) using TMF and those
obtained using the hybrid action on a larger volume, are not consistent, in particular aQ8mall
Wherer(Qz) increases rapidly due to the pion-pole behavior. From the observed quark mass
dependence dB,(Q?) [22] the 50 MeV difference in the pion mass may not be sufficient to fully
account for this discrepancy, which may indicate volume effects.
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Figure 11: Left: Isovector electric and magnetic nucleon FFeiat~ 300 MeV using TMF (] (filled blue
squares) DWFZ6] (crosses), hybrid19] (open orange circles) and Clover fermior] (yellow stars).
Experimental data are shown with the filled green circles accompanied with Kelly’s parametrization shown
with the dashed line. Right: Axial nucleon FFs. The solid line is a dipole fit to experimental d&a(QF)
combined with pion pole dominance to get the solid curve showa;QQZ).

Using HByPT to one-loop, witl\ degrees of freedom and iso-vechA coupling included in
LO [28] we perform a fit toFy (m,;, Q%) andF»(m,, Q?) with five parameters, namely the iso-vector
magnetic moment at the chiral limi?, the isovector and axial N t coupling constants and two
counterterms. As can be seen, the chiral extrapolation increases the vaiuanofF at low Q?,
bringing it into qualitative agreement with experiment. Application of twisted b.c. with a study
of the associated volume correctior®d][ will be very useful in enabling us to obtain these FFs
at lowerQ?-values, permitting a better chiral extrapolation. Using the parameters extracted from
the fits toF; andF, we obtain the chiral dependence of the isovector nucleon anomalous magnetic
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moment and the Dirac and Pauli radii shown in Rig.
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Figure 12: Left: Open squares show the chirally extrapolated results at the physical point. The dashed line
is Kelly’'s parametrization of the experimental data. Right: The solid lines show the prediction)d®HB
using the parameters obtained from fittiig m,;, Q%) andF>(m,,Q?). The notation is the same as that of

Fig. 10. Forrf results using Clover fermion&]] are also shown with the cyan cross-in-square symbols.

5. Results on nucleon moments

In this section we show results on the nucleon matrix element of the one-derivative operators
Uy(u Dyvy u—dyy, Dyy dand upyy, Dyy u—dysy, Dy dintheMSscheme at a scale= 2 GeV.
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Figure 13: Recent results on the isovectfy = (X)y_d andAyp = (X) Au—nd-

In Fig. 13we compare recent results from ETM80], RBC-UKQCD [18], QCDSF R1] and
LHPC [19 on the spin-independent and helicity quark distributions. All collaborations except
LHPC use non-perturbatively computed renormalization constants. As already mentioned, The
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ETMC has, in addition, subtracted(a?) terms perturbatively to reduce lattice artifact§][ There
is a spread in the values of the lattice results. It was noted that taking a renormalization free ratio
leads to a better agreement among lattice data lwith > 4 [31]. In particular this brought the
LHPC data in agreement with those from ETMC and QCDSF.

In HBxPT [32] the expressions for the,-dependence ofyo andAy are given by:

39A+1nﬁ| | CalABme

22
(47rf,,)2 , (Nau-ad = (24?7/;+1nﬁl Cg(A%)me

( 7rf,t)2

QN

{(X)u-a=C

Using 12 = 1 Ge\? and the TMF results we obtain the curves shown in ERj.which yield a
value higher than experiment for both observables. The very recent result by QL SFr,; ~
170 MeV remains higher than experiment and highlights the need to understand such deviations.

6. N-A system

e Ny* — A form factors: There is an extensive experimental program to studyNhe A
EM transition and in particular to obtain accurate results on the sub-dominant quadrupole FFs
£,(q%) and G&,(g?) that probe deformation. The experimental results, shown in Flgare
compatible with the blue band obtained assuming deformation ilNtAeand incompatible with
the red band that includes no deformation. These FFs can be computed within lattice QCD and
since no disconnected contributions are involved they provide yet another benchmark for lattice
methods. The matrix element fddkto A EM transition is written in terms of three Sachs FFs as:

(A(P,S) [I#IN(p,9) = i/ Uno(P,8) | Gia(Q) Ky + Gia(Q*)KES +Ga(Q7) Gz“}UN(IOvS)a

wheres = \/g(nNmA/EA(ri’)EN(rﬁ))l/z is a kinematical factor.
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Figure 14: N to A EM transition: Left: The transverse-longitudinal response functipnvs c.m. angle
between p ang* (from MAMI and Bates) B3]; The N to A magnetic dipole FF (middle) and the ratio of
Coulomb quadrupole to magnetic dipole FF (right) for the hybrid actionNyng 2+ 1 DWF.

The extraction of the sub-dominant quadrupole FFs is enabled by constructing optimized
sources that isolat8g, andGg, [34]. In Fig. 14 we show results using a hybrid action of DWF on
staggered sea as well g = 2+ 1 DWF, provided by RBC-UKQCD. For the dominant dipole FF
Gy1, like for the nucleon FFs, we observe a wea@é’rdependence as compared to experiment,
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that again highlights the need of studying these FFs using simulationswith300 MeV. Lattice
results, shown in Figl4 for the ratio of the Coulomb quadrupole to the magnetic dipole FF are
non-zero. This is also true for the electric quadrupole FF, pointing to a deformation fAhe

e Weak N to A transition: In contrast to the EM transition, the we&kto A is not well
studied experimentally. Therefore a lattice determination of the axial véttorA FFs would
provide important input for phenomenology and in particular for chiral perturbation expansions.
The weak N taA matrix eIemen(A(p’,s’)|Aﬁ|N(p, s)) = U (P, ) Oy, un(p,S) with

CH(Q)

A2 CA 2
Opy =i [(Q(Q)VW 4(Q)p’v> (g/lvgpv_glpg,uv)qp+C5A(Q2)glu+6quqﬂ )

My mg

whereCA(Q?) is the equivalent of the nucleon FFa(Q?) andC4(Q?) of Gp(Q?) showing a pion
pole behavior34]. In Fig. 15we show results on the dominant P(E@andcé obtained using the
hybrid action am,; ~ 350 MeV and withN; = 2+ 1 DWF atm; ~ 330 MeV andm, = 300 MeV.
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Figure 15: Left and middle: AxialN to A FF505A andC@ respectively. The squares are for the hybrid action
atm; ~ 350 MeV, the filled red circles for DWF a,; ~ 330 MeV and the open blue circles for DWF at
m,; = 300 MeV. Right:A electric quadrupole FF for quenchédt, = 2 Wilson and\s = 2+ 1 hybrid action.

7. A electromagnetic form factors and structure

Experimentally thé\ FFs are very difficult to measure due to the fact thattkecays strongly.

Only its magnetic moment is measured experimentally albeit with a large error.Therefore lattice
calculations can complement experiment by providing these FFs.

Figure 16: Quark transverse charge
densities in theA™™ (left) and Q™

note smaller values and the charge
of the particle is taken into account.
A dotted circle of radius 0.5 fm is
included for comparison.

(right) for the 3/2-spin projection
:"‘; along the x-axis. Darker colors de-

0.0
b, [fm]

The matrix elementA(p',s)|j#(0)|A(p,S)) = Up.a(P,S)0**Fup 5(p,s) can be written as

oMb = —%{ [Ff<Q2>g“B +F3(Q)

(2

q“of
Ma)?

™+

o B P TAY
s ot e
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with e.g. the quadrupole FF given byae, = (F; — 7F}) — 3(1+ 1) (F§ — ©F;), wheret =
Q?/(4m2). Optimized sources are constructed to isolate the quadrupot®ggzFwhich probes
deformation. The transverse charge density &f polarized along the x-axis can be defined in
the infinite momentum frame. Usin@g, we can predict the ‘shape’ &. The result is shown in
Fig. 16 and for spin projection/2 it is elongated along the spin axis. The shows a similar but
smaller deformationd5]. The weakA FFs can be computed in an analogous mand@r |

8. Conclusions

The nucleon EM form factors provide a benchmark for lattice QCD beyond hadron masses.
Most collaborations obtain results for the isovector FFs up to a@dut 2 Ge\?. Systematic
studies of lattice artifacts on GFFs are now under way and recent data reveal that cut-off effects
are negligible fora < 0.1 fm, whereas finite volume corrections, although difficult to evaluate, are
within the current statistical errors ef (2 — 3)% for Lm, <~ 3.3. A possible exception i§p at
low Q?-values. We find that, in general, lattice results using different discretization schemes are
consistent but they show a mild€?-dependence as compared to experiment. As illustrated in
the case of the nucleon axial charge, the biggest uncertainty in comparing with experiment is the
chiral extrapolation. Therefore a lattice determination of a number of couplings used as input in
chiral extrapolations will enable global fits to e.g. the\ system that can help extrapolation to the
physical point. Interesting questions such as the ‘shape’ of a hadron can be addressed using input
from lattice form factors as demonstrated for thandQ. Moments of GPDs yield more detailed
information on both longitudinal and transverse distributions and a tomography of hadrons can be
obtained by studying these quantities. We therefore, conclude that, overall, there is good progress
in baryon structure calculations and that we now are in an exciting era, having simulations close
enough to the physical point, in order to probe interesting dynamics in hadronic systems.
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