
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
0
1

Hadron Structure and Form Factors

C. Alexandrou
Department of Physics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus and
Computation-based Science and Technology Research Center, Cyprus Institute, P.O. Box 27456,
1645 Nicosia, Cyprus
E-mail: alexand@ucy.ac.cy

We review recent results on hadron form factors and nucleon generalized parton distibutions ob-

tained with dynamical lattice QCD simulations. We discuss lattice artifacts and open questions,

and present the connection of lattice results to hadron structure and to the corresponding quantities

measured in experiment.

The XXVIII International Symposium on Lattice Field Theory, Lattice2010
June 14-19, 2010
Villasimius, Italy

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:alexand@ucy.ac.cy


P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
0
1

Hadron Structure and Form Factors

1. Introduction

Lattice QCD simulations are currently being performed with dynamical degenerate u- and
d- quarks with a mass close to their physical value as well as the strange quark, using a number
of different discretization schemes with the most common being Wilson-improved, staggered and
chiral fermions. Furthermore, simulations at several lattice spacings and volumes are becoming
available, enabling a comprehensive study of lattice artifacts. The masses of low-lying hadrons
have been computed and extrapolated to the continuum limit using large enough lattice sizes to
ensure that volume effects are small [1, 2]. These calculations show agreement with experiment
and therefore pave the way for evaluating other phenomenologically interesting quantities beyond
these masses.

Several collaborations, using dynamical quarks with pion mass down to about 300 MeV, have
calculated the pion electromagnetic (EM) form factor [3], which is obtained from the matrix ele-
ment〈π+(p′)|Jµ |π+(p)〉= (pµ + p′µ)Fπ(q2), whereq2 = (p′− p)2 =−Q2. Based on vector dom-

inance, lattice data are fitted to the formFπ(Q2) =
(
1+ 〈r2〉Q2/6

)−1
to extract the mean squared

radius, which is shown in Fig.1. As can be seen, there is an increase in the value of〈r2〉 at small
pion mass,mπ . An accurate extraction of〈r2〉 benefits from evaluating the form factor at small
values ofQ2 accomplished by using twisted boundary conditions (b.c.). In a recent calculation,
ETMC combined twisted b.c. and the so called ‘one-end’ trick to incorporate the all-to-all propa-
gator and improve statistics. Using simulations with two degenerate light quarks (Nf = 2) at two
lattice spacings and two volumes [4] the assessment of cut-off and volume effects was carried out.
Lattice results onFπ obtained with pion masses in the range of 300 MeV to 500 MeV, are extrap-
olated to the physical point using NNLO chiral perturbation theory (PT). The resulting form factor
is shown in Fig.2 [4] and it is in agreement with experiment.
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Figure 1: The pion mean square radius as a function of
m2

π obtained using simulations withNf = 2 twisted mass
quarks.
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Figure 2: Fπ extrapolated to the physical pion
mass (red band) using NNLO chiral PT com-
pared to experiment (blue band).

As simulations with quark masses close to the physical value become available, the study of
resonances and decays of unstable particles becomes an important issue. Theρ-meson width has
been studied by several groups [5]. Considering aπ+π− system in theI = 1-channel, the P-wave
scattering phase shiftδ11(k) in infinite volume is related via Lüscher’s relation to the energy shift in
a finite box. UsingNf = 2 twisted mass fermions (TMF) and considering the center of mass frame
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Hadron Structure and Form Factors

and two moving frames one extracts the phase shift at different values of the energy, shown in

Fig. 3. From the effective range formula tanδ11(k) =
g2

ρππ

6π

k3

ECM(M2
R−E2

CM) , wherek =
√

E2
CM/4−m2

π

one determinesMR and the couplinggρππ and then extracts the width usingΓρ =
g2

ρππ

6π

k3
R

M2
R
, where

kR =
√

M2
R/4−m2

π . The results on the width as a function ofm2
π are shown in Fig.4 [6].
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Figure 3: The ρ-meson phase shift atmπ =
308 MeV for a lattice ofL = 2.8 fm.
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Figure 4: Theρ-meson width forNf = 2 twisted
mass fermions as a function ofm2

π .

Having reproduced the low-lying hadron spectrum [1, 2, 7, 8], the masses of excited states can
be studied using e.g. variational methods [9]. Furthermore, one can go beyond masses and consider
form factors (FFs) and generalized parton distributions (GPDs) that probe hadron structure. The
characterization of nucleon structure, in particular, is considered a milestone in hadronic physics
and many experiments have been carried out to measure nucleon FFs and structure functions. Ex-
periments on nucleon FFs started in the 50s. A new generation of experiments using polarized
beams and targets are yielding high precision data spanning largerQ2 ranges. Therefore, nucleon
FFs serve as a further benchmark for lattice QCD. FFs provide ideal probes of the charge and mag-
netization distributions of the hadron as well as a determination of its shape in analogy to similar
studies in e.g. deuteron and other nuclei.

Non-relativistically the form factor can be related
to the density distribution via

F(~q2) =
∫

d3xe−i~q.~x < ψ|ρ(~x)|ψ >.
In Fig. 5 we show the intrinsic charge density contours
of a spin-zero nucleus showing deformation revealed
through measurements of transition densities using
electron scattering.

Figure 5: Tomographic view of the zero-spin de-

formed nucleus154Gd derived from its rotational

bands using electron scattering.

In what follows we will review the status of lattice QCD calculations on baryon form factors
and nucleon generalized parton distributions.
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2. Nucleon Generalized Form Factors - Definitions

In this section, we briefly define the quantities for which results are presented. High energy
scattering can be formulated in terms of light-cone correlation functions. Considering one-particle
states|p′〉 and|p〉, GPDs are defined by [10, 11]:

FΓ(x,ξ ,q2) =
1
2

∫
dλ

2π
eixλ 〈p′|ψ̄(−λn/2)ΓPe

ig
λ/2∫

−λ/2
dαn·A(nα)

ψ(λn/2)|p〉 ,

whereP = (p′+ p)/2, ξ =−n·q/2, x is the momentum fraction, andn is a light-cone vector with
P·n = 1.

There are three different types of operators, depending on the choice ofΓ.
Considering nucleon states these are

Γ = /n :→ 1
2

ūN(p′)
[
/nH(x,ξ ,q2)+ i

nµqνσ µν

2mN
E(x,ξ ,q2)

]
uN(p)

Γ = /nγ5 :→ 1
2

ūN(p′)
[
/nγ5H̃(x,ξ ,q2)+

n.qγ5

2mN
Ẽ(x,ξ ,q2)

]
uN(p)

Γ = nµσ
µν :→ tensor GPDs

“Handbag” diagram

Expansion of the light cone operator leads to a tower of local twist-2 operatorsOµµ1...µn
Γ , related to

moments. The diagonal proton matrix elements〈P|OΓ(x)|P〉, measured in deep inelastic scattering,
are connected to the parton distributionsq(x), ∆q(x), δq(x). The twist-2 operators are defined by

Oµµ1...µn

/n = ψ̄γ
{µ i

↔
D µ1 . . . i

↔
D µn}ψ :

unpolarized→ 〈xn〉q =
∫ 1

0
dxxn [q(x)− (−1)nq̄(x)]

Õµµ1...µn

/nγ5
= ψ̄γ5γ

{µ i
↔
D µ1 . . . i

↔
D µn}ψ :

helicity→ 〈xn〉∆q =
∫ 1

0
dxxn [∆q(x)+(−1)n∆q̄(x)]

Oρµµ1...µn
nµ σ µν = ψ̄σ

ρ{µ i
↔
D µ1 . . . i

↔
D µn}ψ :

transversity→ 〈xn〉δq =
∫ 1

0
dxxn [δq(x)− (−1)n

δ q̄(x)]

whereq = q↓+q↑,∆q = q↓−q↑,δq = q>+q⊥, and the curly brackets represent a symmetrization
over indices and subtraction of traces. The off-diagonal matrix elements extracted from deep virtual
Compton scattering can be written in terms of generalized form factors (GFFs), which contain both
form factors and parton distributions:

〈N(p′,s′)|Oµµ1...µn

/n |N(p,s)〉 = ūN(p′,s′)

[
n

∑
i=0,even

(
An+1,i(q2)γ{µ +Bn+1,i(q2)

iσ{µαqα

2mN

)
qµ1 . . .qµi

P
µi+1 . . .P

µn}+mod(n,2)Cn+1,0(q2)
1

mN
q{µqµ1 . . .qµn}

]
uN(p,s) (2.1)

and similarly forO/nγ5 (in terms ofÃni(q2), B̃ni(q2)) andOnµ σ µν (in terms ofAT
ni, BT

ni, CT
ni andDT

ni).
We list the following special cases:
• n = 1: Ordinary nucleon form factors:

A10(q2) = F1(q2) =
∫ 1

−1
dxH(x,ξ ,q2), B10(q2) = F2(q2) =

∫ 1

−1
dxE(x,ξ ,q2)

Ã10(q2) = GA(q2) =
∫ 1

−1
dxH̃(x,ξ ,q2), B̃10(q2) = Gp(q2) =

∫ 1

−1
dxẼ(x,ξ ,q2) ,
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where in the case of the EM current,jµ = ψ̄(x)γµψ(x), the nucleon matrix element is written in the

form ūN(p′,s′)
[
γµF1(q2)+ iσµν qν

2mN
F2(q2)

]
uN(p,s). The DiracF1 and PauliF2 FFs are related to the

electric and magnetic Sachs FFs via the relations:GE(q2) = F1(q2)− q2

(2mN)2 F2(q2) andGM(q2) =

F1(q2)+F2(q2). For the axial vector currentAa
µ = ψ̄(x)γµγ5

τa

2 ψ(x) the nucleon matrix element is

of the formūN(p′,s′)
[
γµγ5GA(q2)+ qµ γ5

2mN
Gp(q2)

]
1
2uN(p,s).

• An0(0), Ãn0(0), AT
n0(0) are moments of parton distributions, e.g.〈x〉q = A20(0) and〈x〉∆q = Ã20(0)

are the spin independent and helicity distributions. Knowing these quantities one can evaluate the
quark spin,Jq = 1

2[A20(0)+B20(0)] = 1
2∆Σq+Lq and investigate the fraction of the spin carried by

quarks and its contribution to the total spin via the nucleon spin sum rule,1
2 = 1

2∆Σq +Lq +Jg, as
well as the momentum fraction carried by gluons via the momentum sum rule:〈x〉g = 1−A20(0).

3. Lattice evaluation

In order to extract the matrix elements connected to GFFs we need to evaluate three-point
correlators and compute the renormalization of the operators involved. Despite recent progress on
the evaluation of disconnected loops, most lattice calculations of GFFs do not take into account
disconnected contributions. Therefore, in what follows, we consider iso-vector operators for which
such contributions are zero in the isospin limit. For one-derivative operators, mixing with lower di-
mension operators is avoided by symmetrizing over the Lorentz indices and making them traceless.
The study of cut-off and finite volume effects in a systematic way has just begun for baryon GFFs.
These are more difficult to assess since chiral expansions that describe such dependencies are not
as developed as in the light meson case. The presence of more uncertainties in the chiral expansion
combined with the larger statistical noise, which for the nucleon two-point function increases like
noise
signal ∼ e(mN−3mπ/2)/

√
N, make the extrapolation of these quantities to the physical point much

more demanding. In this review we will focus on: i) Nucleon form factors and lower moments
using dynamical simulations with pion massmπ

<∼ 500 MeV and spatial lattice lengthL
>∼ 2 fm

and ii) theN-∆ system in order to determine the complete set of coupling constants needed in
chiral expansions. Other topics relevant to hadron structure, such as the strange nucleon FFs, hy-
peron, Roper and nucleon negative parity FFs, distribution amplitudes and transverse momentum
dependent parton distributions can be found in Ref. [12] and in contributions to this volume.

• Three-point functions: For the extraction of matrix elements of local operators we need the
evaluation of two-point and three-point functions defined by

G(~p, t) = ∑
~xf

e−i~xf ·~p Γ4
βα
〈Jα(~xf , t f )Jβ (0)〉

Gµν(Γ,~p′,~q, t) = ∑
~xf ,~x

ei~x·~qe−i~xf ·~p′ Γβα 〈Jα(~xf , t f )Oµν(~x, t)Jβ (~xi , ti)〉.

Only the displayed connected diagram is evaluated, which, for most current applications, is done
by using sequential inversion “through the sink” fixing the sink-source separationt f − ti , final
momentum~p′ andΓ- projection matrices. Smearing techniques are crucial for improving ground
state dominance in three-point correlators and thus keept f − ti as short as possible. We stress that
it is important to ensure that the time separationt f − ti used is sufficiently large by performing the

5
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calculation at a bigger time separation and checking the consistency of the results. The generalized
eigenvalue method can further improve identification of the ground state [13] and enlarge the upper
range of accessibleQ2-values [14].

•Renormalization constants:Most collaborations use non-perturbative renormalization. Us-
ing a momentum dependent source [15] one evaluates

Su(p) =
a8

V ∑
x,y

e−ip(x−y) 〈u(x)ū(y)〉 , G(p) =
a12

V ∑
x,y,z,z′

e−ip(x−y)〈u(x)ū(z)J (z,z′)d(z′)d̄(y)〉 (3.1)

with the amputated vertex functions given byΓ(p) = (Su(p))−1 G(p) (Sd(p))−1 andJ determines

the operator, e.g.J (z,z′) = δz,z′γ
{µ

↔
D ν} would correspond to the local vector current. The Z-

factors can be determined in the RI′-MOM scheme by imposing the following conditions

Zq =
1
12

Tr[(S(p))−1S(0)(p)]
∣∣∣
p2=µ2

, Z−1
q ZO

1
12

Tr[Γµν(p)Γ(0)−1
µν (p)]

∣∣∣
p2=µ2

= 1, (3.2)

to extract the renormalization factorsZq andZO . These conditions are imposed in the massless the-
ory and therefore a chiral extrapolation is needed. The mass-dependence is very weak for the vector
and axial vector operators. This is demonstrated in Fig. 6 for the case of the one-derivative vector
the axial-vector operators usingNf = 2 TMF [16]. Results onZV andZA as a function of(ap)2

are shown in Fig. 7 where plateaux are improved after subtractingO(a2)-terms perturbatively [17].
Using the RI′-MOM scheme but with a momentum independent source, the RBC-UKQCD Col-
laborations made a comparison between perturbative and non-perturbative determination of the
renormalization constants and found that results for〈x〉u−d [18] with perturbative renormalization
are lower bringing them in agreement with LHPC’s results, which used perturbative renormaliza-
tion [19]. It is therefore important to compute the renormalization constants non-perturbatively.
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π 
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Figure 6: Mass dependence of the renormalization

constant for vector and axial vector one-derivative

operators forNf = 2 TMF [16].
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Figure 7: ZV andZA with perturbative subtraction

of O(a2)-terms forNf = 2 TMF [17].

• Cut-off effects: The nucleon axial chargegA, the isovector momentum fraction< x >u−d=
A20(0) and helicity fraction〈x〉∆u−∆d = Ã20(0) are calculated directly atQ2 = 0 requiring no fits.
We can examine their dependence on the lattice spacing by obtaining these quantities at a given
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value of the pseudoscalar mass in units ofr0. In Fig. 8 we show results at three lattice spacings
usingNf = 2 TMF. As can be seen,O(a2)-terms are small and, allowing a linear dependence, yields
consistent results to those obtained with a constant fit. This is also true for the nucleon isovector
anomalous momentκv, Dirac and Pauli radiir2

1 andr2
2 that require fits to the EM form factors.
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Figure 8: Left: gA, 〈x〉u−d, and〈x〉∆u−∆d; Right: the nucleon anomalous magnetic momentκv, the Dirac ra-

diusr2
1 and Pauli radiusr2

2 timesκv as a function of(a/r0)2. The red line is the result of fitting to a constant;

the blue one is a linear fit. The results are obtained usingNf = 2 TMF [20].

We therefore conclude that cut-off effects are small fora < 0.1 fm for O(a)-improved actions and
that one can use continuum chiral perturbation theory to extrapolate to the physical limit.

• Finite volume corrections: In Fig. 9 we compare results ongA, 〈x〉u−d and〈x〉∆u−∆d com-
puted on different lattice sizes as a function ofm2

π .

Figure 9: gA, 3〈x〉u−d and 3
2〈x〉∆u−∆d using TMF [20],

Clover [21], hybrid [19] and DWF [18].

The observations are: i) Accurate lattice data
by LHPC using domain wall valence quarks on
staggered sea (hybrid) formπ ∼ 350 MeV with
Lmπ = 4.5 andLmπ = 6.2 show no volume ef-
fects; ii) TMF results formπ ∼ 300 MeV with
Lmπ = 3.3 and Lmπ = 4.3 are consistent; iii)
Results for〈x〉u−d using Clover fermions from
QCDSF formπ ∼ 270 MeV withLmπ = 3.4 and
Lmπ = 4.2 are consistent, whereasgA differs by
about a standard deviation; iv) RBC-UKQCD
results with domain wall fermions (DWF) with
Lmπ = 3.9 andLmπ = 5.7 show no volume ef-
fects for〈x〉u−d and〈x〉∆u−∆d [18].

Within the current statistical uncertainties this comparison, therefore shows that volume effects on
< x>u−d and< x>∆u−∆d are negligible forLmπ

>∼ 3.3. ForgA volume effects of about one standard
deviation are seen forLmπ∼3.4 and pion mass below 300 MeV and therefore larger lattices keeping
Lmπ

>∼ 4 may be needed.

Comparing the isovector nucleon EM FFs as a function ofQ2 at mπ ∼ 300 MeV we also find
consistent results forLmπ = 3.3 andLmπ = 4.3. A similar behavior is also observed for the nucleon
axial FFGA(Q2) whereas the induced pseudoscalar FFGp(Q2), which has a pion pole behavior,
may suffer from larger finite volume corrections at lowQ2-values [22].
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4. Results on nucleon form factors

Having examined cut-off and volume effects we compare results from various collaborations
computed with dynamical fermions fora

<∼ 0.1 fm1 andLmπ

>∼ 3.3.
• Nucleon axial charge: The axial charge is well known experimentally. Since it is deter-

mined atQ2 = 0 there is no ambiguity associated with fitting theQ2-dependence of the FF. In
Fig. 10we show recent lattice results using TMF, DWF and a hybrid action of DWF on a staggered
sea, all of which are renormalized non-perturbatively. As can be seen, there is a nice agreement
among different lattice discretizations and no significant dependence on the quark mass down to
aboutmπ = 260 MeV.

Figure 10: Left: Lattice data ongA usingNf = 2 TMF [20] (a = 0.089 fm: filled red circles forL = 2.1 fm
and filled blue squares forL = 2.8 fm; a = 0.070 fm: filled green triangles forL = 2.2 fm; a = 0.056 fm:
purple star forL = 2.7 fm and open yellow square forL = 1.8 fm), Nf = 2+ 1 DWF [23] (crosses for
a = 0.114 fm andL = 2.7 fm) andNf = 2+ 1 using DWF and staggered sea [19] (a = 0.124 fm: open
orange circles forL = 2.5 fm and open cyan triangle forL = 3.5 fm). The physical point is shown by the
asterisk. Right: Volume corrected TMF results extrapolated to the continuum limit together with the fit using
HBχPT (blue band). The band bounded by the lines is the resulting fit to the TMF data shown on the left.

To illustrate the size of lattice artifacts and obtain a value ofgA at the physical point, we use
TMF results [22]. The volume corrected [24] data are extrapolated toa = 0 using three lattice
spacings, namelya= 0.089 fm, 0.070 fm and 0.056 fm, at two values of the pseudoscalar mass, by
fitting to a constant. For intermediate masses we use data at the two coarser lattices. The continuum
volume-corrected results are shown in Fig.10. Chiral extrapolation using one-loop heavy baryon
chiral perturbation theory (HBχPT) in the small scale expansion (SSE) [25] with three fit param-
eters produces a value ofgA = 1.12(8) at the physical point, which is lower than the experimental
value by about a standard deviation. The large error is due to the strong correlation between the
∆ axial chargeg∆∆ and the counter-term involved in the fit. Therefore, a lattice determination of
g∆∆ will allow a more controlled chiral extrapolation. Fitting the raw lattice data produces the band
shown by the dotted lines. Therefore one observes that, although the continuum volume-corrected
results are closer to experiment, the largest uncertainty is due to the chiral extrapolation and at the
physical point the values obtained using the raw and continuum volume-corrected lattice data are
consistent.

1We note that results by the LHPC using a hybrid action havea = 0.124 fm.
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•Nucleon form factors: Recent lattice results on the EM isovector and axial FFs are shown in
Fig. 11. We observe a nice agreement among lattice results, in particular forGE(Q2) andGA(Q2).
However, bothGE(Q2) andGA(Q2) decrease withQ2 less rapidly than experiment. We note that
a good description of theQ2− dependence for bothGE(Q2) andGM(Q2) is provided by a dipole
form using the lattice-computedρ−meson mass. Lattice results onGp(Q2) using TMF and those
obtained using the hybrid action on a larger volume, are not consistent, in particular at smallQ2

whereGp(Q2) increases rapidly due to the pion-pole behavior. From the observed quark mass
dependence ofGp(Q2) [22] the 50 MeV difference in the pion mass may not be sufficient to fully
account for this discrepancy, which may indicate volume effects.

Figure 11: Left: Isovector electric and magnetic nucleon FFs atmπ ∼ 300 MeV using TMF [20] (filled blue
squares) DWF [26] (crosses), hybrid [19] (open orange circles) and Clover fermions [27] (yellow stars).
Experimental data are shown with the filled green circles accompanied with Kelly’s parametrization shown
with the dashed line. Right: Axial nucleon FFs. The solid line is a dipole fit to experimental data forGA(Q2)
combined with pion pole dominance to get the solid curve shown forGp(Q2).

Using HBχPT to one-loop, with∆ degrees of freedom and iso-vectorN-∆ coupling included in
LO [28] we perform a fit toF1(mπ ,Q2) andF2(mπ ,Q2) with five parameters, namely the iso-vector
magnetic moment at the chiral limitκ0

v , the isovector and axial N to∆ coupling constants and two
counterterms. As can be seen, the chiral extrapolation increases the value ofF1 andF2 at low Q2,
bringing it into qualitative agreement with experiment. Application of twisted b.c. with a study
of the associated volume corrections [29] will be very useful in enabling us to obtain these FFs
at lowerQ2-values, permitting a better chiral extrapolation. Using the parameters extracted from
the fits toF1 andF2 we obtain the chiral dependence of the isovector nucleon anomalous magnetic

9
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moment and the Dirac and Pauli radii shown in Fig.12.

Figure 12: Left: Open squares show the chirally extrapolated results at the physical point. The dashed line
is Kelly’s parametrization of the experimental data. Right: The solid lines show the prediction of HBχPT
using the parameters obtained from fittingF1(mπ ,Q2) andF2(mπ ,Q2). The notation is the same as that of
Fig. 10. Forr2

1 results using Clover fermions [21] are also shown with the cyan cross-in-square symbols.

5. Results on nucleon moments

In this section we show results on the nucleon matrix element of the one-derivative operators
ūγ{µ

↔
Dν} u− d̄γ{µ

↔
Dν} d and ūγ5γ{µ

↔
Dν} u− d̄γ5γ{µ

↔
Dν} d in theMSscheme at a scaleµ = 2 GeV.

0 0.1 0.2 0.3
m π

2  (GeV2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
20

TMF: a=0.056 fm
TMF: a=0.07 fm
TMF: a=0.089 fm
Hybrid: a=0.124 fm
DWF: a=0.114 fm
QCDSF: a=0.067 fm
QCDSF: a=0.075 fm
QCDSF: a=0.080 fm

0 0.1 0.2 0.3
m π

2  (GeV2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
20~

TMF: a=0.056 fm, L=1.8 fm
TMF: a=0.056 fm, L=2.7 fm
TMF: a=0.07 fm, L=2.2 fm
TMF: a=0.089 fm, L=2.1 fm
TMF: a=0.089 fm, L=2.8 fm
DWF: a=0.114 fm, L=2.7 fm
Hybrid: a=0.124 fm, L=2.5 fm

Figure 13: Recent results on the isovectorA20 = 〈x〉u−d andÃ20 = 〈x〉∆u−∆d.

In Fig. 13 we compare recent results from ETMC [30], RBC-UKQCD [18], QCDSF [21] and
LHPC [19] on the spin-independent and helicity quark distributions. All collaborations except
LHPC use non-perturbatively computed renormalization constants. As already mentioned, The
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ETMC has, in addition, subtractedO(a2) terms perturbatively to reduce lattice artifacts [16]. There
is a spread in the values of the lattice results. It was noted that taking a renormalization free ratio
leads to a better agreement among lattice data withLmπ > 4 [31]. In particular this brought the
LHPC data in agreement with those from ETMC and QCDSF.

In HBχPT [32] the expressions for themπ -dependence ofA20 andÃ20 are given by:

〈x〉u−d = C

[
1− 3g2

A +1
(4π fπ)2m2

π ln
m2

π

λ 2

]
+

c8(λ 2)m2
π

(4π fπ)2 , 〈x〉∆u−∆d = C̃

[
1− 2g2

A +1
(4π fπ)2m2

π ln
m2

π

λ 2

]
+

c̃8(λ 2)m2
π

(4π fπ)2

Using λ 2 = 1 GeV2 and the TMF results we obtain the curves shown in Fig.13, which yield a
value higher than experiment for both observables. The very recent result by QCDSF [21] at mπ ∼
170 MeV remains higher than experiment and highlights the need to understand such deviations.

6. N-∆ system

• Nγ∗ → ∆ form factors: There is an extensive experimental program to study theN to ∆
EM transition and in particular to obtain accurate results on the sub-dominant quadrupole FFs
G∗

E2(q
2) and G∗

C2(q
2) that probe deformation. The experimental results, shown in Fig.14, are

compatible with the blue band obtained assuming deformation in theN-∆ and incompatible with
the red band that includes no deformation. These FFs can be computed within lattice QCD and
since no disconnected contributions are involved they provide yet another benchmark for lattice
methods. The matrix element forN to ∆ EM transition is written in terms of three Sachs FFs as:

〈 ∆(p′,s′) | jµ | N(p,s)〉= iA ū∆,σ (p′,s′)
[
G∗

M1(Q
2)Kσ µ

M1 +G∗
E2(Q

2)Kσ µ

E2 +G∗
C2(Q

2)Kσ µ

C2

]
uN(p,s) ,

whereA =
√

2
3 (mNm∆/E∆(~p′)EN(~p))1/2 is a kinematical factor.

Figure 14: N to ∆ EM transition: Left: The transverse-longitudinal response functionσLT vs c.m. angle
between p andγ∗ (from MAMI and Bates) [33]; The N to ∆ magnetic dipole FF (middle) and the ratio of
Coulomb quadrupole to magnetic dipole FF (right) for the hybrid action andNf = 2+1 DWF.

The extraction of the sub-dominant quadrupole FFs is enabled by constructing optimized
sources that isolateG∗

E2 andG∗
C2 [34]. In Fig. 14we show results using a hybrid action of DWF on

staggered sea as well asNf = 2+1 DWF, provided by RBC-UKQCD. For the dominant dipole FF
G∗

M1, like for the nucleon FFs, we observe a weakerQ2-dependence as compared to experiment,
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that again highlights the need of studying these FFs using simulations withmπ < 300 MeV. Lattice
results, shown in Fig.14 for the ratio of the Coulomb quadrupole to the magnetic dipole FF are
non-zero. This is also true for the electric quadrupole FF, pointing to a deformation of theN-∆.

• Weak N to ∆ transition: In contrast to the EM transition, the weakN to ∆ is not well
studied experimentally. Therefore a lattice determination of the axial vectorN to ∆ FFs would
provide important input for phenomenology and in particular for chiral perturbation expansions.
The weak N to∆ matrix element〈∆(p′,s′)|A3

µ |N(p,s)〉= ūλ
∆(p′,s′)Oλ µuN(p,s) with

Oλ µ = iA

[(
CA

3 (Q2)
mN

γ
ν +

CA
4 (Q2)
m2

N

p′ν
)

(gλνgρν −gλρgµν)qρ +CA
5 (Q2)gλ µ +

CA
6 (Q2)
m2

N

qλ qµ

]
,

whereCA
5 (Q2) is the equivalent of the nucleon FFGA(Q2) andCA

6 (Q2) of Gp(Q2) showing a pion
pole behavior [34]. In Fig. 15 we show results on the dominant FFsCA

5 andCA
6 obtained using the

hybrid action atmπ ∼ 350 MeV and withNf = 2+1 DWF atmπ ∼ 330 MeV andmπ = 300 MeV.

0 0.5 1 1.5

−4

−3

−2

−1

0

Q2 in GeV2
G

E2

 

 

quenched Wilson, mπ = 410 MeV

hybrid, mπ = 353 MeV

dynamical Wilson, mπ = 384 MeV

Figure 15: Left and middle: AxialN to ∆ FFsCA
5 andCA

6 respectively. The squares are for the hybrid action
at mπ ∼ 350 MeV, the filled red circles for DWF atmπ ∼ 330 MeV and the open blue circles for DWF at
mπ = 300 MeV. Right:∆ electric quadrupole FF for quenched,Nf = 2 Wilson andNf = 2+1 hybrid action.

7. ∆ electromagnetic form factors and structure
Experimentally the∆ FFs are very difficult to measure due to the fact that the∆ decays strongly.

Only its magnetic moment is measured experimentally albeit with a large error.Therefore lattice
calculations can complement experiment by providing these FFs.
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Figure 16: Quark transverse charge
densities in the∆++ (left) andΩ−

(right) for the 3/2-spin projection
along the x-axis. Darker colors de-
note smaller values and the charge
of the particle is taken into account.
A dotted circle of radius 0.5 fm is
included for comparison.

The matrix element〈∆(p′,s′)| jµ(0)|∆(p,s)〉= ū∆,α(p′,s′)Oαµβ u∆,β (p,s) can be written as

Oαµβ =−A∆

{[
F∗

1 (Q2)gαβ +F∗
3 (Q2)

qαqβ

(2m∆)2

]
γ

µ +

[
F∗

2 (Q2)gαβ +F∗
4 (Q2)

qαqβ

(2m∆)2

]
iσ µνqν

2m∆

}
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with e.g. the quadrupole FF given by:GE2 = (F∗
1 − τF∗

2 )− 1
2(1+ τ)(F∗

3 − τF∗
4 ), whereτ ≡

Q2/(4m2
∆). Optimized sources are constructed to isolate the quadrupole FFGE2, which probes

deformation. The transverse charge density of a∆ polarized along the x-axis can be defined in
the infinite momentum frame. UsingGE2 we can predict the ‘shape’ of∆. The result is shown in
Fig. 16 and for spin projection 3/2 it is elongated along the spin axis. TheΩ− shows a similar but
smaller deformation [35]. The weak∆ FFs can be computed in an analogous manner [36].

8. Conclusions

The nucleon EM form factors provide a benchmark for lattice QCD beyond hadron masses.
Most collaborations obtain results for the isovector FFs up to aboutQ2 = 2 GeV2. Systematic
studies of lattice artifacts on GFFs are now under way and recent data reveal that cut-off effects
are negligible fora

<∼ 0.1 fm, whereas finite volume corrections, although difficult to evaluate, are
within the current statistical errors of∼ (2−3)% for Lmπ

>∼ 3.3. A possible exception isGp at
low Q2-values. We find that, in general, lattice results using different discretization schemes are
consistent but they show a milderQ2-dependence as compared to experiment. As illustrated in
the case of the nucleon axial charge, the biggest uncertainty in comparing with experiment is the
chiral extrapolation. Therefore a lattice determination of a number of couplings used as input in
chiral extrapolations will enable global fits to e.g. theN-∆ system that can help extrapolation to the
physical point. Interesting questions such as the ‘shape’ of a hadron can be addressed using input
from lattice form factors as demonstrated for the∆ andΩ. Moments of GPDs yield more detailed
information on both longitudinal and transverse distributions and a tomography of hadrons can be
obtained by studying these quantities. We therefore, conclude that, overall, there is good progress
in baryon structure calculations and that we now are in an exciting era, having simulations close
enough to the physical point, in order to probe interesting dynamics in hadronic systems.
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