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Figure 1. A conjectured phase diagram of QCD fér = 2 and forN;s = 2+ 1 when the strange quark mass
is not much smaller thanqcp. In the chiral limit there is a tri-critical point, from whicemerges an Ising
critical line whose intersection with the plane of physigahrk mass is the QCD critical point.

1. Introduction

QCD at finite baryon density is interesting because of two reasons: fitghiére is a program
of experimental studies covering five colliders, running and planneuathwtill look at this prob-
lem, and second, that it does not seem open to standard methods of attttkengauge theory
due to a sign problem [1]. In this review | will bring together evidence thatgioblem is still
open to a fruitful attack using small modifications of the usual tools of latticg@aueory, and
give some of the main physics results. The context of these first results &thectured phase
diagram of Figure 1 [2].

Any Monte Carlo integration process suffers from a sign problem if thgyrated is not real
and positive definite. For the QCD action with a chemical potential on the barymber, the
determinant of the Dirac operator, which is the quark part of the meashegs the condition

detD + m+ uy)* =detD+m— u*y), 1.1)

whereD is the massless Dirac operator,is the massy is the baryon chemical potential, ard
denotes complex conjugation. For any generic complex chemical potentiahihig that there
is a sign problem. For pure imaginagy(including 4 = 0), the determinant is real, and one can
further prove its positivity by considering its commutation wh

This sign problem is not necessarily mild. Baryonless random matrix theems to predict
that for u < my;/2 the distribution of signs is Gaussian and becomes Lorentzian at |af&gr In
either case the problem is severe. An earlier work had estimated the cofdhe variance of
the phase of the quark determinant and found that this decreases & igératures, where the
problem could therefore become easier [4].
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Figure 2: The line is the phase boundary of the 3d XY model, found udiegworm algorithm [8]. The
instability of the complex Langevin method is illustratedthis figure [11]: this method converges to the
wrong probability measure. The difference between theoastfor the true and converged distributions is
colour coded.

This review is structured as follows. Section 2 presents an overviewrgfingresting new
attempts to attack the sign problem directly; unfortunately they are not yetatédge where
they can be applied to QCD. Section 3 reviews the Madhava-Maclaurirs ssqpansiohmethod
which has vyielded first results on the phase diagram and on some othanrai#asjuantities.
Finally in Section 4 first results from experiments are reported along with adegms to lattice
QCD predictions.

2. Trial algorithms

The class of algorithms which has had the most attention till now is reweightimfprpethe
Monte Carlo procedure at a point in the phase diagram where thereigmareblem, and then find
expectation values of operators by choosing an appropriate weigbadbrconfiguration. Various
problems with this process are by now well-known; they include large edigggo cancellations
and inaccurate sampling, which become exponentially large with the volumeBudspest group
applied this method to the problem of locating the QCD critical point [5]. The RitleSwansea
algorithm is a variant of this method which expands the determinant in a serie$6lh There
have been no developments in this class of algorithms since it was review@d3n 7.

Two new classes of algorithms are being tested currently, and, althouglapipécability to
QCD is not yet clear, they are interesting enough to merit some discusgiteredtingly, they
become easy to compare because the two algorithms have been, delibepgtidyg to the same
model recently. This is the 3-d XY model at finite chemical potential, which hagadtion

S= —BZCOS(QX—QXH]—HJ@MA). (2.1)
X[l

1In the 14th century Madhava of Sangamagrama developed the squissén for functions and estimates of the
error terms which later came to be associated with the name of Maclaurin.
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This suffers from a sign problem whens£ O.

One approach [8] exploits the fact that sign problems are not inherghetphysics of a
system, but to specific representations. By a clever transformation of figiich amounts to
redefining the theory in terms of fluxes of particles along links, they reduoea form without
a sign problem, although the theory then becomes non-local. However, iregrissentation it
becomes amenable to a numerical attack using the “worm algorithm” [9]. Thistiven sets out
a finite-size scaling theory which describes the point at which it beconezgetitally favourable
to add one more patrticle to the ground state. The simulation results allow thetiextraicfinite
size scaling parameters which can then be used to determine the phasmdiagra

The other approach resurrects an old idea— the complex Langevin metherkin one ad-
dresses sign problems by complexifying the fields while the noise remains Eaalier works
had been plagued by runaway directions and associated humericallitissalmow brought under
control by the use of adaptive step-size integrators. For a while a pfaminvergence of such
methods seemed to be within reach [10]. However, it turns out that therdenayonvergence to
the wrong result [11]. This is illustrated in Figure 2, which shows that tbblpm arises mainly at
small temperature and large chemical potential. Since this region is similar to thatdh QCD
has large sign fluctuations [3], a better understanding of the origin of thiggam may throw light
on applications to QCD.

In the next section we turn to the algorithm, first described in [13], whiclovgused by many
groups, and has begun to yield many consistency tests and, possiblgantact with experiment.

3. TheMadhava-Maclaurin series expansion

The pressure of QCD matter in a grand canonical ensemble can be edpara Madhava-
Maclaurin series around the point= 0 to obtain

12

P(T,1) =P(T)+ 5

4
XO(T)+Ex T+ (3.1)
where all the coefficients are computeduat 0. P(T) is the pressure at zero chemical potential,
x®@(T) is called the quark number susceptibility (QNS) [12] and all x4 (T) are generically
called non-linear susceptibilities (NLS). It was suggested that the NLI8 beumeasured ip =0
simulations, and the feasibility was demonstrated by computations in quencH2@1Q[C More
recently, within the last year, there have been attempts to compute theseientffby simulating
QCD at imaginary chemical potential and fitting extrapolating functions to the[tldjgwe will
return to a discussion of this later).

3.1 Computational effort

The x(™’s are combinations of quarks loops with insertionstip ton times [15]. These
quark loop traces are obtained through stochastic noise averagemeasare of the feasibility of
such measurements is to examine the signal to noise ratio in the measurementhemngmber
of noise vectors id\,, i.e., the ratio of the mean and square root of the variance of such a trace in
one configuration. When the ratio is large, the measurement is easy. &edisare was reported
using staggered quarks on a«24® lattice atT /T, = 0.75 andN; = 2 when the quark mass is
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Figure 3: Signal to noise ratios for various fermion traces which etite evaluation of the NLS (see [15]
for explanations of the notation). Circles denote datat@ggered quarks [15] and boxes for P4 quarks [16].
The red circles denote measurements of quantities whiahidlbe exactly zero.

tuned to givam; = 230 MeV [15]. Here we add results from P4 action with= 2+ 1, with light
quark masses tuned to the same valumeindT /T, = 0.84 [16]. In both casekl, = 400 and the
signal to noise ratios are comparable (see Figure 3). A direct compavrigoAsqtad quarks is not
available, but from the claim that 50% of the noise in [17] is due to stochasttin&ors, one finds
that the signal to noise ratio for that Dirac operator is comparable.

NearT; autocorrelations between successive configurations is large— ofdbeafr200-250
trajectories. Assuming that it takes about 200 fermion matrix inversionsagjectory, and that we
useN, = 500 for every decorrelated configuration, then, since it takes 18siores per measure-
ment (up to the 8th order of the expansion in eq. 3.1), the ratio of CPU timesrfa@asurement
to that for generating a decorrelated configuration is 0.24. The margisab€é measurement is
small. Well inside the hot phase, ai.2 the autocorrelation time drops to about 4 trajectories,
wheread\, = 100. The ratio of CPU times for measurement to generating decorrelatédwzon
rations climbs to 4.5, however, with relatively small expenditure of CPU time. Assalt, direct
measurements of the NLS are highly feasible. An added attraction is thatj@@ifons which
have been generated for any finite temperature study can be reusedlianalysis, thus reducing
the marginal cost even further.

3.2 Series Analysisfor the critical point

Methods for analysis of series expansions of the free energy or itatiegs are well-known
in statistical mechanics, and have been used successfully in many cglsé#liile the core of the
analysis is the same, there are interesting differences between thessalkieand the application
to QCD, which lead to differences in the method of analysis [15, 19]. Thesseoefficients in the
older works came from exact enumeration of graphs, correspondinfjrtibe volume systems, so
that a coefficient was either known exactly or not known. In the prtesse the series coefficient
is evaluated on finite lattices with statistical errors through a Monte Carlo $soce
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Figure 4: Estimates of the radius of convergence of the series exransieq. 3.2 from finite temperature
simulations afl = 0.94T. with two flavours of staggered quarks and the bare quark memgitto give
my; = 230 MeV and lattice spacing/16T ). Open symbols correspond to estimateg;aind filled symbols
toz,. WhenLT increases from 2 to 4, (L) increases significantly, as shown.

The main point of the analysis is that the series for the quark number s$ilbidgpcan be
analyzed for its radius of convergence. The series for the QNS is

@1 @(T) 2 z
X _I(_Zvu) :X Tg )+2|X(4)(T)+4|T2X(6)(T)+ (3.2)

wherez = /T and each of the dimensionless combinati®fis*x (" (T) is the direct output of a
lattice computation. Since the expansion iz et fixed value ofT, it is equivalent to an expansion
in u. If the divergence occurs at a temperature at which all the seriefooerts are positive, then
the non-analyticity occurs for real valueszpfand the divergence can be identified with the critical
point of QCD.

The radius of convergence can be found by several methods, alichworrespond to com-
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paring the series against another with a known singularity. The bestkdefinitions are—

1/(n-2)
n!Tn—ZX(n+2) B 2!Tn*4X(n)
Z;+l = \/(n+2)!Tn—4x(n) ’ and Z:; - ( n!X(Z)/T2 ' (33)

The star and bar do not indicate complex conjugation. The common limitase of both is the
radius of convergence of the series. This test is closely coupled to aihibee scaling analysis.

The reason is the following. If there is a critical point at soim€, TE) then the QNS diverges
there on an infinite volume system. However, on any finite volumgethere may be a peak, but
no divergence. As the system size decreases, the peak beconmssr lanod lower. As a resul;,
andz, may seem to give a finite radius of convergencerfer n.(L). For largem both z; andz;
will then become larger and larger, since there is no actual divergeribe series for the QNS.
As L increases, one would fimi.(L) also increasing without limit. In simulations of QCD with 2
flavours of staggered quarks with the bare quark mass tuned tongixe230 MeV, such behaviour
is actually seen at one temperature (see Figure 4). At this temperature [dlL$hare positive, so
the limiting singularity is at real values gf. We can then identify such a temperature vilifhand
the corresponding estimate of the radius of convergencepfipi E.

Such estimates of the critical point have been made with two different latticengsausing
two flavours of staggered quarks on large volume lattices [15, 19]. A atatipn with 2+1 flavours
of P4 quarks at almost the same valuargf has also been performed with large lattices [20] and
preliminary estimates of the radius of convergence have been repoffedTZese are collected
in Figure 5. Since large volumes are crucial to obtaining a stable estimate ofitihal goint,
older computations with smaller volumes have not been added into this figurafeébhey have
realistic values ofn;. A by-product of this choice is that all the points in the figure use the same
computational technique, albeit with different lattice spacings and quédnac

Interest in the critical point is enhanced because of the possibility thal/fiea collision
experiments may observe it. Fireballs produced in such collisions undeegoical freezeout at
certain values oft andT which change with the center-of-mass enesg$, of the colliding nuclei.
The chemical freezeout point is relevant if one tries to use fluctuatiom®mderved quantum
numbers as probes of the critical point: we shall return to this argument Taterfreezeout curve
is parametrized in [24]. This has been superposed on the phase diagFagare 5 by using the
scaleT, = 175.

A pleasant fact emerges from Figure 5: that lattice spacing effectsecaounded in magni-
tude by currently available computations. The difference between diffémeds of actions is, of
course, a finite lattice spacing artifact. The magnitude of the lattice spacexy efitimated from
two different spacings with the same action turns out to be comparable witindhrah comparison
of two different actions at nearly the same lattice spacing.

Interestingly, the effect of the strange quark on the end point seemsutadee control. It has
long been known that in the Columbia plot, the physical point correspora$hiermal cross over
[22], as a result of which the topology of the phase diagram of realisticfvour QCD is the
same as for two flavours, as in Figure 1. As the strange quark mass iasadrand the light quark
mass is reduced, the thermal crossover passes through a critical poiatfirst order transition.
It turns out that the line of critical points is far from the physical point: tl@ameeds to be about
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4. The points in pink are obtained from computations with 2dias of staggered quarks and the point in
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freezeout curve.

3.0 . . . . . .

=
,El.S + g
10} J

05t J

0 05 10 15 20 25 30

pc
m n/mn

Figure 6: The variation of the radius of convergence with in partialyenched computations with the
staggered sea quark mass tuned to gime~ 230 MeV. As the valence quark mass is changed the partially
quenched pion mass gy .
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Figure 7: Using the series expansion to describe the data obtainedghrdirect simulations at imaginary
chemical potential.

10 times lighter and the strange quark mass about 3 times lighter [23]. Thislo®olae reason to
suspect that the numerical values for the critical end point in 2 flavadiRat flavour QCD may
not be very different. Such an argument is compatible with the results caleckgure 5.

The major remaining effect is due to the light quark mass being larger thaicphyThe only
exploration of this effect till now is a partially quenched computations &ith 1/(4T) and two
flavours of staggered quarks with a sea quark mass tuned tongixe230 MeV [25]. Interestingly,
an interpolation between the measured value of the radius of converngasamnsistent with the
result of an unquenched computation with P4 quarks tuned tongive 550 MeV [4]. In Figure
6 the earlier results are extended by adding a similar analysésot/(6T). The extrapolation to
the physical value afn; shows a 15% drop in the value gF.

3.3 Extrapolation of observables

Apart from the prediction of the critical point, the series expansion coeldded to extrapo-
late measurements to finite chemical potential. Tests of such extrapolationsettenney can
describe measurements made directly through simulations at imaginary cheoteratiagl. The
most straightforward extrapolation is to use the series. A preliminary attemjas[8hown in Fig-
ure 7. One sees that adding new terms in the series improves the extrapofyionarginally in
u. Closely related to this exercise are attempts to extract the series coefficiemtaeasurements
obtained in direct simulations at imaginary chemical potential. It was shoventlgd14] that
simple series descriptions of the data obtained at finite imaginary chemicatipbéea inefficient
and more complicated forms are needed to perform the extraction of the ceeifficients.

Clearly, when the series expansion of a physical quantity is close taydivee, then a trun-
cated sum is clearly not the best way to find the value of this quantity at fini@ne must search
for series resummation techniques. One method which has been widelyouseddmmation of
high temperature series of spin models [18] is to determine Padé approxirsarggshem. There
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Figure 8: Extrapolation of the measurement of the QNI &tto finite uu. The series resummation does not
diverge, although adding terms causes large changes. Thedparoximant exhibits the divergence but is
stable under addition of extra terms.

is a detailed theory of Padé approximants [26] which needs to be extendpgdlications in QCD
where the series coefficients are known only within some statistical efr®fs [

In Figure 8 we show truncated series sums for the QNIS-at 0.94T.. There is no sign of any
divergence, although successive orders fail to agree with eachastbe radius of convergence
is approached. In the same figure we also show the QNS obtained withdzanémations of the
series. These exhibit the divergence identified through series andtyisialso useful to note that
the Padé approximants fitted to different number of terms of the serieswiginezach other except
whenz is significantly larger than the radius of convergence. The Padé anmgigiates a width
of the critical region which is aboutu /TE ~ 0.25.

4. Comparison with experiments

The QNS are related to fluctuations of conserved quantities in a grandicahensemble. It
may be possible to realize this in an experiment by looking at a part of thalfigoduced in a
heavy-ion collision, provided it thermalizes. Then one way in which grambgical physics can
be extracted is by observing particles only in a restricted space-time ra@ddg r If this range is
chosen judiciously, then the remainder of the fireball may act as a heatebdtie system under
observation. Then each collision event satisfying the above experinzensals one member of a
grand canonical ensemble of events.

Event-to-event distributions of conserved quantities then form the wdisles of interest [28].
The cleanest observable is the distribution of total electric ch@ggnce there is very little chance
of missing a significant fraction of the charge within the acceptance volum@aryon number,
B, and strangeness, are also good observables, but since there are uncharged vayorell as
long-lived uncharged strange patrticles, both of which are missed bygtdetethe connection to
these quantities is made at a further remove [29]. Nevertheless, curtteatiyost extensive data
comes from observations of the net proton number, which is a proxydarehbaryon number.

It is seen that fluctuations of conserved quantities are Gaussian. $heu@stion is whether
this Gaussian is entirely (or largely) due to thermal fluctuations. The onlytaanswer this

10
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Figure 9: Comparison of experimental data with lattice predictioifie upper panel shows; and the
lower mp.

is by going beyond the Gaussian. A systematic way to do this is to chéreyed check how
the distribution changes. Gaussian distributions usually arise in experimeotglha process
described by the central limit theorem: with increasihthe higher cumulants of the distribution
scale down with larger powers ®f. The STAR collaboration reported such a measurement [30]
using an experimentally determined parameter called the participant nugheras a proxy for

V. At small Npart all the cumulants|B"], are comparable, and with increasiNgs the scaling of

the cumulants is exactly as one should expect— in other words, the microgtysics encoded

in the set of B"] does not change witNpat.

If the fluctuations are due to thermal processes, {B8hare related to various NLS com-
putable in QCD. This is the next step: to check the data against the predi@ign# order to do
this one has to take combinations of the cumulants which are free of incidentdilea such as
the unmeasurabM. This is achieved by taking the ratios

B3  TxO(T,u) BY  T2x“(T,n) BY  Tx“(T,n)
B x0mw TR x@mp 0 TR x@Mu) #1)

B7  x@(T,u) B3 x®(T.u)
Now, the left hand side of each equation is known from experiment &t¢&cand the right hand
side is known from lattice computations if one knows the freezeout valyesn@T. These values
are parametrized from experimental data in [24] assuming that the firebathdtizes.

On one hand, the series expansions for the NLS are known from tl@s®n in eq. 3.1, on
the other, the ratios of eq. 4.1 have well-determined power behaviour &t zraad poles near
the critical point. As a result, resummation of the series by Padé approximarsdible. The

m =

11



QCDwithu #0 Sourendu Gupta

parameters in the Padé approximants are closely related to the estimatesAsf a result, the
lattice artifacts inmy » 3 are related to those already discussed in the previous section. It turns ou
that bothm; andnm, may have significant finite lattice spacing corrections: mainly a common finite
multiplicative factor which is also the correction to the estimate to the radius otogence. For

mg lattice spacing corrections are small, except in the vicinity of the critical poesuRs for these
guantities have been given in [33].

The STAR experiment at RHIC has recently published a measurementngiacable quanti-
ties from runs at three different values\@Bwhere comparisons with these quantities are presented
[32]. As shown in Figure 9, it turns out that there is good agreementdeetthe data and the pre-
dictions. Many questions remain to be answered: on the side of the lattice tairops the usual
guestions about flavours, quark masses and lattice spacing, on thérexpal side about the
removal of non-thermal backgrounds and other sources of fluctgatidevertheless, this is a sig-
nificant milestone: the first direct comparison of heavy-ion data with lattiedigtions. In future
such a comparison may even yield a direct measurementad pointed out in [33], allowing us
to set the scale for lattice measurements in an entirely new way.

5. Assorted topics

There are various developments at finite chemical potential which caenob\vered fully
here because of space constraints. However, they are interesting iovtheight and have useful
connections to the physics which is discussed in the previous sectiores| tHake a brief mention
of some of these works.

In the chiral limit there is a line of second order phase transitions at finimmanating from
the finite temperature critical point (see Figure 1). The curvature of thisdiae object of interest
because it sets a scale for the tricritical temperature in the chiral limit. Inteyestin work was
presented on this problem by several groups [34].

The phase diagram at imaginary chemical potential is of some interest, sihas tb be
understood if simulations in this region are to be used for analytic continuatitre tphysically
interesting case. New results were presented by two groups [35].

The investigation of correlation functions at finite chemical potential is in it$cy§36]. Any
new information is interesting at this stage. New work was reported in this mgafthg

The strong coupling expansion has been resurrected in this contekhpraled techniques
are now being used to investigate the phase diagram. Interesting new ireshiksdirection were
reported [38]. These may serve to benchmark future simulations usingotime algorithm which
can be adapted to the strong coupling theory.

All the results reported till now simulate the grand canonical ensemble. Veryshtsiematic
effort has gone into simulations in the canonical ensemble with fixed bamyober. One such
attempt was reported [39].

6. Conclusions

Over the years there has been a great improvement in the understafitiegign problem at
finite u in QCD: where it could be tractable and where it is not [3]. There has lile progress

12
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in directly tackling this problem, although there are interesting developments imath@ling of
other models with sign problems [8, 11]. However, in the last five years th&s been enormous
progress in lattice computations which can yield information on QCD at finitd he essential
development is the use of analytic continuation, through a Madhava-Mactaries expansion in
u [13]. There are encouraging tests of this method in performing analytitnc@ion to finite
imaginaryu where direct simulations are also possible [14, 27].

The series expansion method has been applied to the extraction of the QIC& point at
various lattice spacings [15, 19] and with various quark actions and msrabfavours [20, 17]. A
composite figure of the predictions is given in Figure 5. It is clear from thisré that the method
yields results with controlled statistical and systematic errors. Since the rasalligt strongly
sensitive to the choice of action, it is also clear that lattice spacing effextsoanded.

An interesting development in the past year has been the proposaltadfanseasurables, eq.
4.1, which allow a direct comparison of experiment and lattice computationst rEsults show
very good agreement between data [32] and prediction [33]. This caltefiewed activity in this
field and a greater scrutiny of the known systematic uncertainties whichcoeda!.

For communicating their results and then patiently answering my questions | kel
thank Gert Aarts, Shailesh Chandrasekharan, Rossella Falcoria;Réala Lombardo, and Chris-
tian Schmidt.

References

[1] Ph. de Forcrand?oSLATTICE2009 (2009) 010 [arxiv:1005.0539].

[2] M. A. Stephanov, K. Rajagopal and E. V. Shury&ys. Rev. Lett31 (1998) 4816, anéhys. RevD
60 (1999) 114028.

[3] M.-P. Lombardo, K. Splittorff and J. VerbaarschBtys. RevD 80 (2009) 054509 [arxiv:0904.2122].
[4] C.R. Allton et al, Phys. RevD 71 (2005) 054508 [hep-lat/0501030].

[5] Z. Fodor and S. KatzPhys. LettB 534 (2002) 87 [hep-lat/0104001].

[6] C.R. Allton et al, Phys. RevD 66 (2002) 074507 [hep-lat/0204010].

[7] S. Ejiri, POSLATTICE2008 (2008) 002.

[8] D. Banerjee and S. Chandrasekharan, [arxiv:1001.3648]

[9] For more on this class of algorithms see the reviews Sn@tesekhararRo0SLATTICE2008 (2008)
003 [arxiv:0810.2419]; U. Wolff, Lattice2010

[10] G. Aarts, E. Seiler, I. O. Stamates@hys. RevD 81 (2010) 054508 [arxiv:0912.3360].
[11] G. Aarts and F. A. Jamed, H. E. P1008 (2010) 020 [arxiv:1005.3468].

[12] S.A. Gottliebet al, Phys. Rev. Lett59 (1987) 2247.

[13] R. V. Gavai and S. Gupt®hys. RevD 68 (2003) 034506 [hep-lat/0303013].

[14] P. Ceaet al, Phys. RevD 80 (2009) 034501 [arxiv:0905.1292];

[15] R.V. Gavaiand S. Gupt#&hys. RevD 71 (2005) 114014.

[16] C. Schmidt, private communication.

13



QCDwithu #0 Sourendu Gupta

[17] C. DeTaret al, Phys. RevD 81 (2010) 114504 [arxiv:1003.5682].

[18] C. Domb and M. S. GreerRhase Transitions and Critical Phenomera 2, Academic Press, (1972).
[19] R. V. Gavaiand S. Gupt#&hys. RevD 78 (2008) 114503.

[20] M. Chenget al, Phys. RevD 79 (2009) 074505.

[21] C. Schmidt, arXiv:1007.5164.

[22] F. R. Brownet al, Phys. Rev. Lett65 (1990) 2491.

[23] G. Endrodiet al, PoOSLAT2007 (2007) 182 [arxiv:0710:0998].

[24] H. Oeschletet al, PoSCPOD2009 (2009) 032.

[25] R. V. Gavaiand S. Guptayucl. PhysA 785 (2007) 18.

[26] G. A. Baker and P. Graves-MorriEncyclopedia of Mathematics: Padé Approximastsl 13, Part 1,
Addison-Wesley Publishing Company, Reading, Massactsj$&081).

[27] R. Falconeet al, these proceedings.

[28] M. Asakawa, U. W. Heinz and B. MulleRhys. Rev. Lett85 (2000) 2072; S. Jeon and V. KodPhys.
Rev. Lett.85 (2000) 2076.

[29] Y. Hatta and M. A. Stephano®hys. Rev. Lett91 (2003) 102003.

[30] B. Mohanty,Nucl. PhysA 830 (2009) 899c.

[31] S. Gupta,PoSCPOD2009 (2009) 025.

[32] M. M. Aggarwalet al, (STAR CollaborationPhys. Rev. Lettl05 (2010) 022302.
[33] R.V. Gavai and S. Gupta, arXiv:1001.3796.

[34] S. Ejiri etal, arXiv:1011.4747 (these proceedings); S. Mukhegeal, arXiv:1012.2231 (these
proceedings); B. Kleiret al, arXiv: 1011.1435 (these proceedings).

[35] O. Phillipsenet al, these proceedings; L. Cosn&tial, these proceedings.

[36] S. Choeet al, Phys. RevD 65 (2002) 054501; S. Gupta, eprint hep-lat/0202005.
[37] H. lidaet al, arXiv: 1012.2044 (these proceedings).

[38] K. Miura et al, arXiv:1010.5687 (these proceedings).

[39] K.-F. Liu et al, these proceedings.

14



