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1. Introduction

Understanding of the nuclear force from quantum chromodynamics (QCD) is one of the most
challenging problems in nuclear and particle physics. Experimentally, a large number of proton-
proton and neutron-proton scattering data as well as deuteron properties have been accumulated
and summarized e.g. in the Nijmegen database [1]. Below the pion production threshold, the
notion of theNN potential (either in the coordinate space or in the momentum space) is useful in
the sense that it can be used not only to describe the two-body system but also to study the nuclear
many-body problems through ab-initio calculations [2].

The phenomenologicalNN potentials in the coordinate space are known to reflect some char-
acteristic features of theNN interaction [3]:
(i) The long range part of the nuclear force (the relative distancer > 2 fm) is dominated by the
one-pion exchange [4]. Because of the pion’s Nambu-Goldstone character, it couples to the spin-
isospin density of the nucleon and hence leads to the tensor force.
(ii) The medium range part (1 fm< r < 2 fm) receives significant contributions from the exchange
of multi-pions. In particular, the spin-isospin independent attraction of about 50 – 100 MeV in this
region plays an essential role to nuclear binding.
(iii) The short range part (r < 1 fm) is best described by a strong repulsive core [5, 6]. Such a short
range repulsion is relevant for the maximum mass of neutron stars.
(iv) There is also a strong attractive spin-orbit force in the isospin 1 channel at medium and short
distances. This leads to the3P2 neutron pairing in neutron matter and hence the neutron superflu-
idity inside neutron stars [7].

Several high precisionNN forces are now available to fit neutron-proton and proton-proton
scattering data (about 4500 data points) withχ2/dof ∼ 1. However, they have typically 20-40
fitting parameters: e.g. CD Bonn potential, AV18 potential and N3LO chiral effective field theory
have 38, 40, and 24 parameters, respectively [8]. If one tries to extend these to hyperon-nucleon and
hyperon-hyperon interactions, the task becomes extremely tough since the number of parameters
increase and the scattering data are scarce. In this situation, it is highly desirable to study the
general baryon-baryon interactions from the first principle lattice QCD simulations, since all the
hadronic interactions in QCD are controlled only by the QCD scale parameter (ΛQCD) and the
quark masses (mu, md, ms) whose values are pretty well determined [9].

A theoretical framework to study the hadron-hadron interaction using lattice QCD was first
proposed by Lüscher [10] and was applied to the lattice QCD simulations for theNN interaction in
[11]: For two hadrons in a finite box with a sizeL×L×L in the periodic boundary condition, an
exact relation between the energy spectra in the box and the elastic scattering phase shift at these
energies was derived. If the range of the hadronic interactionR is sufficiently smaller than the size
of the boxR< L/2, the behavior of the equal-time Nambu-Bethe-Salpeter (NBS) amplitudeψ(r)
in the intervalR< |r| < L/2 under the periodic boundary condition has sufficient information to
relate the phase shift and the two-particle spectrum. This Lüscher’s method bypasses the difficulty
to treat the real-time scattering process on the Euclidean lattice.

Recently, an alternative approach to the hadron interactions in lattice QCD was proposed [12,
13, 14]. The starting point is the same equal-time NBS amplitudeψ(r): Instead of looking at
the amplitude outside the range of the interaction, the internal region|r| < R is considered and an
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energy-independent non-local potentialU(r, r ′) is defined fromψ(r). SinceU(r, r ′) in QCD is a
localized function in space due to confinement of quarks and gluons, it receives finite volume effect
only weakly. Therefore, onceU , although it is not a direct physical observable, is determined on the
lattice, one may simply use the Schrödinger equation in the infinite space to calculate observables
such as the scattering phase shifts, bound state spectra etc. Moreover, the potential would be a
smooth function of the quark masses: This is in sharp contrast to the scattering length which shows
a singular behavior around the quark mass corresponding to the formation of the two-body bound
states such as the deuteron. Similar situation is well-known in the BEC-BCS crossover of cold
fermionic atoms [15].

In this article, we will eview some recent results of the nuclear force on the lattice (or the
lattice nuclear force in short) after a brief introduction to the basic formulation.

2. Deriving the NN potential on the lattice

2.1 NBS wave function on the lattice

In field theory, the best analogue of the two-particle wave function is the equal-time Nambu-
Bethe-Salpeter (NBS) amplitude or the“NBS wave function": Let us consider an exact six-quark
state|E ⟩ which has total energyE , total three-momentum zero and total electric charge+e in a
finite box. Then we define the NBS wave function by

ψ(r) = ⟨0|nβ (x+ r, t = 0)pα(x, t = 0)|E ⟩. (2.1)

The local composite operators for the proton and the neutron are denoted bypα(x, t) andnβ (y, t)
with spinor indicesα andβ . One should keep in mind that|E ⟩ is not a simple superposition of a
product state|p⟩⊗|n⟩, since there are complicated exchanges of quarks and gluons between the two
composite particles. The NBS wave functionψ(r) can be regarded as a probability amplitude in
|E ⟩ to find “neutron-like” three-quarks located at pointx+ r and “proton-like” three-quarks located
at pointx.

The spatial extent of theNN interaction in QCD is short ranged and is exponentially sup-
pressed beyond the distanceR∼ 2 fm. Therefore, the spatial part of the NBS wave function in the
“outer region" satisfies the Helmholtz equation,

(∇2 +k2)ψ(r) = 0 (|r| > R), (2.2)

up to an exponentially small correction inL. Here the “asymptotic momentum"k is determined by
the asymptotic behavior of the wave function in the outer region.

An important property of the NBS wave functionψ(r) is that its asymptotic behavior at large
|r| in the infinite volume limit reproduces the correct phase shift obtained from theS-matrix of
the elasticNN scattering. This can be shown explicitly by using the Nishijima-Zimmermann-
Haag(NHZ)’s reduction formula [16] for the products of local composite operators. (The proof is
given in Appendix A of [14].) To define the NBS wave function on the lattice, we start with the
four-point function

G (r, t − t0) =
〈
0
∣∣nβ (x+ r, t)pα(x, t)S(t0)

∣∣0
〉
→ ψ(r) e−E0(t−t0) (t ≫ t0), (2.3)

whereE0 is the lowest energy state created by the source operatorS(t0).
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2.2 Non-local potential and the velocity expansion

To define theNN potential from the NBS wave function, let us introduce the following local
function:

KE(r) =
1

2µ
(∇2 +k2)ψE(r) ≡ (E−H0)ψE(r). (2.4)

In the second equality, we introduce an “effective center of mass energy",E = k2/(2µ), and the
free HamiltonianH0 = −∇2/(2µ), with µ = mN/2 being the reduced mass of the two nucleons.
They are introduced only to make a formal resemblance with the Schrödinger type equation and
have nothing to do with non-relativistic approximation. Hereafter, we put the suffixE to the NBS
wave function to emphasize itsE-dependence. Since the “plane-wave" part of the NBS wave
function in the outer region (r > R) is projected away by the operatorE−H0, the functionKE(r)
is non-vanishing only in the inner region (r < R). Note also that the Fourier transform ofKE(r) is
essentially the half off-shellT-matrix.

We can rewrite Eq.(2.4) in two equivalent ways:

(E−H0)ψE(r) = UE(r)ψE(r) =
∫

U(r, r ′)ψE(r ′)dr′. (2.5)

The first equality is just a definition of the energy-dependent local potential,UE(r) = KE(r)/ψE(r).
On the other hand, the energy-independent non-local potential,U(r, r ′), is defined fromUE(r)
through a self-consistent equation,

U(r, r ′) = ⟨r|Û |r ′⟩ = ∑
E

∫ +∞

−∞

dt
2π

UE(r)⟨r|ei(Ĥ0+Û−E)t |r ′⟩. (2.6)

Carrying out thet integration formally, one may also write Eq.(2.6) as

Û = ∑
E

ÛEδ (E− Ĥ0−Û). (2.7)

In these formulas,∑E stands for the summation (integration) over the discrete (continuum) ener-
gies. In particular,E is always discrete on the lattice with a finite volume. Also,E has an upper limit
Ec at which inelastic scattering starts to take place. Eliminating theE-dependence of the potential
through Eq.(2.6) has been discussed in a transparent manner by Królikowski and Rzewuski [17]
long time ago: their motivation was to prove the equivalence between the multiple-time Nambu-
Bethe-Salpeter type equation with anE-dependent kernel and the equal-time Schrödinger type
equation with anE-independent potential. Essentially the same method was rediscovered and dis-
cussed in [12, 13, 14] in the context of the NBS wave function on the lattice.

If we further focus on the low-energy scattering withE sufficiently smaller than the intrin-
sic scale of the system or the scale of the non-locality of the potential in Eq.(2.5), the velocity
expansion ofU(r, r ′) in terms of its non-locality is useful [18]: For example, the potential with
hermiticity, rotational invariance, parity symmetry, and time-reversal invariance may be expanded
as [19]

U(r, r ′) = V(r,v)δ (r − r ′), (2.8)

V(r,v) = VC(r)+VT(r)S12︸ ︷︷ ︸
LO

+VLS(r)L ·S︸ ︷︷ ︸
NLO

+O(v2)︸ ︷︷ ︸
N2LO

+ · · · , (2.9)
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wherev = p/µ andL = r × p with p = −i∇, and

S12 =
3
r2(σ1 · r)(σ2 · r)−σ1 ·σ2. (2.10)

Each coefficient of the expansion is a local potential and can be determined successively by measur-
ing the NBS wave functions for several different energies. The central potentialVC and the tensor
potentialVT are classified as the leading order (LO) potentials since they are ofO(v0). The next-
to-leading (NLO) potential ofO(v) is the spin-orbit potentialVLS(r). The LO and NLO potentials
are phenomenologically known to be the dominant interactions at low energies.

An advantage of defining the potential from the NBS wave functions in the “inner region"
is that the effect of the lattice boundary is exponentially suppressed for finite range interactions:
Then one can first make appropriate extrapolation ofU(r, r ′) orV(r,v) to L→∞, and then solve the
Schrödinger equation using the extrapolated potential to calculate the observables such as the phase
shifts and binding energies in the infinite volume. This is in contrast to the Lüscher’s approach
[10] in which the wave functions in the “outer region" suffering from the boundary conditions is
ingeniously utilized to probe the scattering observables. Apparently, the two approaches are the
opposite sides of a same coin.

2.3 Interpolating operator and the potential

In Eq. (2.1), simplest interpolating operators for the neutron and the proton written in terms of
the up-quarku(x) and the down-quarkd(x) would be

nβ (x) = εabc(ua(x)Cγ5db(x))dcβ (x), pα(x) = εabc(ua(x)Cγ5db(x))ucα(x), (2.11)

wherex = (x, t) and the color indices are denoted bya, b andc. The charge conjugation matrix in
the spinor space is denoted byC. The local operators given above are most convenient for relating
the NBS wave function to the four-point Green’s function and the scattering observables atL → ∞
through the NZH reduction formula.

In principle, one may choose any composite operators with the same quantum numbers as the
nucleon to define the NBS wave function. Different interpolating operators lead to different NBS
wave functions and differentNN potentials. However, they lead to the same physical observables
by construction. Analogous situation can be seen in quantum mechanics where the unitary trans-
formations modify both the wave function and the potential in such a way that observables are
unchanged. Even more direct analogy is in field theory for point-like particles: Field re-definitions
modify the vertices and propagators in the Feynmann rule, while the on-shellS-matrix is not af-
fected by such changes.

2.4 Central and tensor forces

In the LO of the velocity expansion in Eq. (2.9), we have the central potentialVC(r) and the
tensor potentialVT(r), so that the Shrödinger equation reads(

E−H0
)
ψE(r) =

(
VC(r)+VT(r)S12

)
ψE(r). (2.12)

The central potential acts separately on the orbital S-state and the D-state, while the tensor potential
provides a coupling between these two. Therefore, a coupled-channel Schrödinger equation is

5
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Figure 1: (a) LO potentials in (2+1)-flavor QCD formπ=701 MeV [22]. (b) LO potentials in quenched
QCD formπ=731 MeV [14].

obtained from Eq.(2.12) by using the projection operatorsP andQ to the S-state and D-state,
respectively. Eventually we calculateVC andVT from the following formula where the quantities
in the right hand side are all known on the lattice:(

VC

VT

)
=

(
PψE PS12ψE

QψE QS12ψE

)−1(
E−H0 0

0 E−H0

)(
PψE

QψE

)
. (2.13)

3. Numerical results in quenched and full QCD simulations

3.1 LO potentials

To demonstrate whether the formalism discussed in the previous section indeed works, we
first carried out a quenched QCD simulations with the standard plaquette gauge action and the
standard Wilson quark action on a 323×48 lattice [12, 13, 14]. The lattice spacing isa = 0.137
fm which corresponds to the spatial sizeL = 4.4 fm. The light quark masses are chosen so that we
havemπ =731, 529 and 380 MeV andmN =1558, 1334 and 1197 MeV, respectively. Periodic or
anti-periodic boundary conditions are imposed on the quark field along the spatial direction.

As for full QCD, we use the PACS-CS gauge configurations in (2+1)-flavor QCD generated
by the Iwasaki gauge action and theO(a)-improved Wilson quark (clover) action on a 323× 64

6
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Figure 2: Quark mass dependence of the LO potentials in (2+1)-flavor QCD. (a) The central potential in the
spin-singlet channel, (b) the central potential in the spin-triplet channel, and (c) the tensor potential in the
spin-triplet channel [22].

lattice [21]. The lattice spacing isa = 0.091 fm which corresponds to the spatial sizeL = 2.9 fm.
The light quark masses are chosen so that we havemπ =701, 570 and 411 MeV andmN =1583,
1412 and 1215 MeV, respectively. Also, Periodic boundary condition is imposed on the quark field
along the spatial direction.

Shown in Fig.1(a) are the LO potentials (VC for 1S0 and3S1 channels andVT determined from
3S1-3D1 channel) in (2+1)-flavor QCD formπ=701 MeV. Even with such a large quark mass, there
is a clear evidence of the repulsive core surrounded by attractive well for for central potential and
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Figure 3: (Left) A comparison of the1S0 central potentials obtained at different energies (E ∼ 0 MeV vs.
E ∼ 45 MeV). (Right) A comparison of the spin-singlet central potential atE ∼ 0 MeV with different orbital
angular momenta (L = 0 vs.L = 2). Figures are taken from [23].

an evidence of a mild tensor force [22]. They have qualitative similarity with phenomenological
potentials. We show in Fig.1(b) the LO potentials in quenched QCD withmπ=731 MeV for com-
parison [14]. Although the qualitative structure of the potentials are the same, the magnitude of the
repulsive core and the tensor force are relatively weak in quenched QCD.

Shown in Fig.2(a,b,c) are the quark mass dependence of the LO potentials in (2+1)-flavor
QCD [22]. As the quark mass decreases, the repulsive core in (a,b) and the tensor force in (c)
become stronger and the attractive well in (a,b) becomes wider. We have fitted these potentials and
have calculated theNN scattering phase shift by solving the Schrödinger equation. We found that
deuteron bound state does not appear for these quark masses, so that further reduction of the quark
mass would be necessary to obtain the realistic lattice potentials.

3.2 Convergence of the velocity expansion

So far, the potentials are derived with the periodic boundary condition in the spatial direction
for the quark fields. This leads to the the “effective center of mass energy"E = k2/(2µ) almost
zero. To study the convergence of the velocity expansion of the non-local potential in Eq.(2.9), we
compare the local1S0 potential (in quenched QCD withmπ = 529 MeV) obtained atE ≃ 0 MeV
under the periodic boundary condition and that obtained atE ≃ 45 MeV under the anti-periodic
boundary condition [23]. Good agreement between the two as shown in the left panel of Fig.3
indicates that aO(v2) term in the N2LO level is rather small in this energy interval. Shown in the
right panel of Fig.3 is a test for a differentO(v2) term in the N2LO level [23]: In this case, local
potentials determined at the same energy (E ≃ 0 MeV) with different orbital angular momenta
(L = 0,2) in the spin-singlet channel are compared. Again, within statistical errors, the effect of
the N2LO term is likely to be small.

4. Hyperon interactions

To unravel the origin of the repulsive core in theNN interaction, let us consider theS-wave
interaction between octet baryons in the flavor SU(3) limit. In this case, two baryon states with a

8



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
0
8

Nuclear Physics on the Lattice Tetsuo HATSUDA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

W
av

e 
fu

nc
tio

n 
φ(α

) (r
)

r [fm]

1S0

mπ=835 [MeV], t−t0=10, normalized at rmax

27
8s
1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

W
av

e 
fu

nc
tio

n 
φ(α

) (r
)

r [fm]

3S1

mπ=835 [MeV], t−t0=10, normalized at rmax

10*
10
8a

Figure 4: NBS wave functions atmπ = 835 MeV, normalized to 1/2 for the singlet channel and to 1 for
other channels at the maximum distance [25].

given angular momentum are labeled by the irreducible flavor multiplets as

8⊗8 = 27⊕8s⊕1︸ ︷︷ ︸
symmetric

⊕ 10∗⊕10⊕8a︸ ︷︷ ︸
anti-symmetric

. (4.1)

Here “symmetric" and “anti-symmetric" stand for the symmetry under the flavor exchange of two
baryons. For the system in the orbital S-wave, the Pauli principle between two baryons imposes
27, 8s and1 to be spin singlet (1S0) while 10∗, 10and8a to be spin triplet (3S1). Since there are no
mixings among different multiplets in the SU(3) limit, one can define the corresponding potentials
as

1S0 : V(27)(r), V(8s)(r), V(1)(r), (4.2)
3S1 : V(10∗)(r), V(10)(r), V(8a)(r) . (4.3)

Potentials among octet baryons, both the diagonal part (B1B2 → B1B2) and the off-diagonal part
(B1B2 → B3B4), are obtained by suitable combinations ofV(α)(r) with α = 27,8s,1,10∗,10,8a.

In this SU(3) study, we employ the gauge configurations on a 163×32 lattice generated by CP-
PACS and JLQCD Collaborations with the renormalization group improved Iwasaki gauge action
and the non-perturbativelyO(a) improved Wilson quark action. The lattice spacing and the lattice
volume area = 0.121(2) fm andL = 1.93(3) fm, respectively. These configurations are provided
by Japan Lattice Data Grid (JLDG) and International Lattice Data Grid (ILDG) [24].

Fig. 4 shows the NBS wave functions as a function of the relative distance between two
baryons atmπ = 835 MeV [25]. To draw all data in a same scale, they are normalized to 1/2 for
the singlet channel and to 1 for other channels at the maximum distance. The wave functions in
Fig. 4 show characteristic flavor dependence: In particular, a strong suppression at short distance
appears in the8s channel, while a strong enhancement appears in the1 channel. Similar results are
obtained formπ = 1014 MeV too.

Fig. 5 shows the resulting three independent BB potentials in the1S0 channel in the flavor
basis obtained from the NBS wave functions. Red bars (green crosses) data correspond to the
pion mass 1014 MeV (835 MeV): Although there is a tendency that the magnitude (range) of the
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Figure 5: The three independent BB potentials in the1S0 channel in the flavor SU(3) limit, extracted from
the lattice QCD simulation atmπ = 1014 MeV (red bars) andmπ = 835 MeV (green crosses).

potentials becomes larger at short distances (longer at large distances) for lighter quark mass, the
differences are not substantial for the present heavy quark masses. Left panels of Fig.5 showV(27)

which corresponds to NN1S0 potential. It has a repulsive core at short distance and an attractive
pocket as we have shown already in quenched and (2+1)-flavor simulations. The middle panel of
Fig. 5 corresponding toV(8s) has a very strong repulsive core among all channels. In contrast, the
right panel of Fig.5 corresponding toV(1) shows attraction for all distances, which is relevant to
the cereblatedH-dibaryon [26].

These features are consistent with what has been observed in phenomenological quark models
[27]. In particular, the potential in the8s channel in quark models becomes strongly repulsive
at short distance since the six quarks cannot occupy the same orbital state due to quark Pauli
blocking. On the other hand, the potential in the1 channel does not suffer from the quark Pauli
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blocking and can become attractive due to short range gluon exchange. Such an agreement between
the lattice data and the phenomenological models indicates that the quark Pauli blocking plays
an essential role for the repulsive core in BB systems as suggested long time ago in [28]. One
can also confirm the idea of the Pauli blocking by considering the meson-baryon interaction such
as charmonium-nucleon potential [29] and kaon-nucleon potential [30] within the present lattice
approach. Generalization of the baryon-baryon interaction to the case with explicit SU(3) breaking
is also under way [31].

5. Summary and concluding remarks

In this article, we have discussed the basic notion of the nucleon-nucleon potential and its
field-theoretical derivation from the equal-time Nambu-Bethe-Salpeter wave function in QCD. By
construction, the non-local potential defined through the projection of the wave function to the
interaction region (the inner region) correctly reproduces the asymptotic form of the wave function
in the region beyond the range of the nuclear force (the outer region). Thus the observables such
as the phase shifts and the binding energies can be calculated after extrapolating the potential to
the infinite volume limit. Non-locality of the potential can be taken into account successively
by making its velocity expansion, which introduces the velocity-dependent local potentials. The
leading-order terms of such velocity expansion for the nucleon-nucleon interaction are the central
and the tensor potentials.

Some results in the quenched and (2+1)-flavor lattice QCD simulations are shown for rela-
tively heavy pion masses,mπ ∼ 400,500,700 MeV. We found that theNN potential calculated
on the lattice at low energy shows all the characteristic features expected from the empiricalNN
potentials obtained from the experimentalNN phase shifts, namely the attractive well at long and
medium distances and the repulsive core at short distance for the central potential. As for the tensor
potential obtained from the coupled channel treatment of the3S1-state and the3D1-state, we found
appreciable attraction at long and medium distances.

As the quark mass decreases, the repulsive core and attractive well in the central potential, and
the attractive well in the tensor potential tend to be enhanced. To make the deuteron bound state,
however, it is necessary to go the lighter quark masses. We have also shown that the derivative
expansion in terms of the local and energy-independent potentials works well at low energies for
at least the quark masses studies above.

There are a number of directions to be investigated on the basis of our approach. Among
others, the most important direction is to carry out (2+1)-flavor simulations with a large volume
(e.g.L = 6 fm) at physical quark mass (mπ = 135 MeV) to extract the realisticNN potentials. This
will be indeed started soon as a first priority simulation at 10 PFlops national “K" supercomputer
which will have full operation in 2012 at Advanced Institute for Computational Science (AICS) in
Kobe, Japan [32]. Simulations of the three or more nucleons on the lattice are also a challenging
problem to be studied in relation to the attractive binding of finite nuclei and to the repulsive effect
in high density matter relevant to neutron stars. Study along this line has been recently started
[33, 34].

If it turns out that the program described in this article indeed works in lattice QCD with
the physical quark mass, it would be a major step toward the understanding of atomic nuclei and
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neutron stars from the fundamental law of the strong interaction, the quantum chromodynamics.

Note added: Recently, full QCD simulations of the hyperon potentials in the flavor SU(3) limit
reported in [25] and discussed in Sec.4 were extended to the lattice sizesL ≃ 3 and 4 fm for
the pseudo-scalar meson mass of 673–1015 MeV. By solving the Schrödinger eqaution with the
flavor-singlet potential, a boundH-dibaryon with the binding energy of 30–40 MeV was found
[35] (see also [36]). Since the binding energy turns out to be insensitive to the quark masses, there
may be a possibility of weakly bound or resonantH-dibaryon even in the real world with lighter
quark masses and with the flavor SU(3) breaking. To make a definite conclusion, however, the
(2+1)-flavor lattice QCD simulations forH-dibaryon withΛΛ-NΞ-ΣΣ coupled channel analysis is
necessary. Such a direction is currently in progress [37].
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