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1. Quantum gravity and the lattice

Gravity remains the only fundamental interaction which vagéhnot yet been able to formu-
late and understand as a full quantum theory. Even basiesssmain open, for example, whether
gravity at the most fundamental level will be truly unifiedtlvthe weak, strong and electromag-
netic interactions, or have more of a separate status, ispini¢ of the classical theory. Research in
guantum gravity is driven by a number of simple, but profognéstions: What are the quantum
origins of space, time and our universe? What is the miarosire of spacetime, and careitplain
macroscopic gravitational interactions and perhaps dvemiiverse’'s observed large-scale struc-
ture? Are “space”, “time” and “causality” fundamental or emgent concepts in a setting where
spacetime geometry is allowed to undergo large quantunrufitions?

Apart from its appeal as a white spot on the map of our undailstg of fundamental high-
energy physics, the specific reason why this topic is of iaheinterest to the lattice community is
the apparent need in quantum gravity for nonperturbativihaus to model and understand the rel-
evant Planck-scale physics. Lattice and Monte Carlo teghes, adapted to systems of dynamical
geometry (such as gravity), provide powerful tools for @dding such issues. For low-dimensional
systems of quantum geometry the validity and usefulnesaasf methods has been demonstrated
long ago, and reviewed at previous lattice conferencesruretedings like “lattice gravity and ran-
dom surfaces” [1]. Similar techniques can be applied toftiddged four-dimensional quantum
gravity, but the situation here is less clear-cut, whichas surprising in view of our limited un-
derstanding of this theory. As will be described in whatdals, attempts are under waydefine
quantum gravity as the scaling limit of a specific statistgystem of dynamical geometry. For
the physically relevant case of four spacetime dimensiirespnly way we can currently study the
existence and properties of this nonperturbative limitiaslattice methods. In other words, despite
the fact that quantum gravity is at a much earlier stage atrthbuilding, compared with a theory
like QCD, numerical methods — in conjunction with analytiaad theoretical modelling — can be
used in a profitable way to explore what this theory may bes @tso implies that the more founda-
tional aspects of theory development are currently at mastpar with purely simulation-technical
aspects, like improving efficiency or increasing the latsize.

At this stage, the only points of reference and comparisotattice quantum gravity are al-
ternative and (likewise incomplete) nonperturbative folations in the continuum. In addition,
because of the requirement of covariance, there are alsidepable challenges in defining and
evaluating observable quantities, which can be used t@ctaize the physical properties of the
theory. The specific candidate theory of quantum gravitguidesd below arises from a confluence
of ideas from general relativity (in particular, gravitgexific properties like dynamical geom-
etry and background independence), high-energy physicpditicular, the use of path integral
and renormalization group methods), and, equally crygikttice field theory. This approach of
“Quantum Gravity from Causal Dynamical Triangulations (QDWas last reported on during ple-
nary talks at Lattice 2000 and 2001 [2], when the formulats@s still in its infancy, and far from
deriving results in the physically interesting case of fdumensions. The remainder of this pre-
sentation constitutes a brief progress report on the masyeisting developments that have taken
place since then, focussing on four-dimensional resuliselMxtensive recent reviews of the field
can be found in [3].
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2. Causal Dynamical Triangulations 101

Viewed from a larger perspective, CDT quantum gravity is atmight conservative approach
in the sense of relying exclusively on standard quantum-fleddretic tools and principles, applied
to the situation where spacetime is not regarded as fixedtdaltt part of the nonperturbative dy-
namics. It builds on technigues which have been well tesidtieé study of systems of random
surfaces and Euclideaimodels of quantum gravity, and does not invoke or presestiyire “ex-
otic” ingredients like strings, loops, branes, extra disiens or new symmetries. By contrast, it
is an approach with few free parameters, whose outcomesyarenstruction robust. This means
that if it can be shown to lead to a viable theory of quantunvigyathe theory will be reasonably
unigue. On the other hand, if in the future it produces resatich are inconsistent (for example,
because its classical limit is in contradiction with Eims® general relativity), it will be difficult
to fix this by twiddling with the parameters of the model.

Since dynamically triangulated models of quantum gravity @menable to numerical meth-
ods, which can and do produce numbers and results, the abosa&lerations are not merely of a
theoretical nature, as is illustrated by the fate of the i#ean precursor of CDT. This candidate
theory of four-dimensional quantum gravity generated warable excitement in the early 1990s
before it was understood gradually that it suffers fromlfd&generacies, which prevent the emer-
gence of macroscopic, classical spacetimes of dimension fumerical simulations were crucial
in bringing about this result (for a summary of these develepts, as well as a complete bibli-
ography, see [4]). This illustrates that the presence oli@kpomputational consistency checks,
combined with a small number of free parameters and a higredesf universality (independence
of the continuum theory of the details of the lattice diseadton) means that in practice quan-
tum gravity theories from dynamical triangulations can &isified. Despite being a hallmark of
any good physical theory, falsifiability has become someawvaiia rarity in more speculative ar-
eas of high-energy theory, including quantum gravity. Wiiatwould like to emphasize here is
the importance — in the absence of any direct probes of Plaoale physics — of “computational
experiments” in providing criteria for the viability of cdidate theories for quantum gravity.

In technical terms, quantum gravity from causal dynamigahgulations is a nonperturbative
implementation of the gravitational path integral. It hd®ady passed several nontrivial tests
and has produced unprecedented results, as will be deddrddew. In the process, it also has
highlighted a number of unexpected features (and pitfdll®) to the nonperturbative nature of the
construction, which permits large quantum fluctuationsroalkscales.

The idea of constructing a nonperturbative gravitatiomhintegral which captures Lorentzian,
causal properties of the spacetimes to be summed over gdesaampaper from 1998 [5], where it
was also demonstrated by explicit, analytic computatien tie idea works in two dimensions and
produces a result distinct from previous Euclidean mode&lajuantum gravity. The first results
for the physical, four-dimensional theory were publishe@004 [6].

As a warm-up, consider the path integral for a nonrelatisarticle of massnin one dimen-

Linstead of spadeneswith Lorentzian signature, Euclidean gravity works withgly spatial geometries, which do
not have a notion of time or causality. Euclidean gravity e@®pular starting point for cosmological path integralskba
in the 1970s and '80s and (usually for reasons of simplificgtcontinues to be used in some path integral formulations
of full gravity.
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Figure 1: Sample paths or “historiest(t) from a regularized version of the path integral of the naxvrel
tivistic particle in imaginary timea ;= —it, generated by a Monte Carlo simulation. The total time irgkr

T = 11 — 1; has been subdivided into time steps of lengtland the trajectories are piecewise linear. The
average pathix(1)) is indicated by the central fat line.

sion, moving in a harmonic oscillator potential, and subjedixed boundary conditiong = X(t;)
andx; = X(t¢) at some initial and final timet andt;. The corresponding path integral describes
the transition amplitude frorg; to x; as a superposition of amplitudes ei§ix(t)] of all possi-
ble particle trajectories with the given boundary condisiowhereSx(t)] is the classical action
of the entire pathx(t). The superposition gives rise to an “average path”, the @agtien value
(x(t)) in the given ensemble (c.f. Fig. 1, which shows a sample dfsat Euclidean, imaginary
time 1 := —it, generated by a Monte Carlo simulation). The typical sizéhefdeviationdx(1)
of a general history(t) = (X(1)) + 0x(1) from this expectation value can be computed explicitly,
yielding

h  coshwT — coshw(T — 21)

2y _
(Ox(1)7) = 2mw sinhwT ’ 2.1)

wherew is the oscillator’s frequency, = 17¢ — T; is the total length of the time interval considered,
and the timer runs fromt; = 0 to T. Anticipating a similar quantum superposition in gravity,
where each “path” will represent a curved spacetime, we hlinterested both in the “average
universe” and deviations from it. In this case, the scalewdnjum fluctuations of some linear
distancex is expected to b ox|) 0 v/hGinstead of the|dx|) O y/h/mw of the particle case, with
G denoting Newton’s constant.

Quantum gravity from causal dynamical triangulations isoagerturbative and background-
independent realization of the formgdavitational path integrala.k.a. the “sum over histories”)
on a differential manifoldV,

ZGN= [ Flgw) e, (22)

whereS™ is the four-dimensional Einstein-Hilbert actiof,the cosmological constant, and the
path integral is to be taken over all spacetinigs,] € ¥ (M) (Lorentzian metricgy,, modulo
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diffeomorphisms), with specified boundary conditions. thew words, each path is now a four-
dimensional, curved spacetime geometyy|, which can be thought of as a three-dimensional,
spatial geometry developing in time. The weight associati#tld each[g] € ¢4 (M) is given by the
Einstein-Hilbert action

SH[g] = ﬁ /d“x\/—detg(R[g, dg,0%g] — 2N). (2.3)

To evaluate this quantum field-theoretic path integral, mmoeeeds in close analogy with the path-
integral quantization of the nonrelativistic particle d@sed above. The latter is defined as the
continuum limit of a regularized sum over paths, where th&rdouting “virtual” paths are taken
from an ensemble of piecewise straight paths, with the tirtexvala for each step going to zero in
the limit. The method of CDT turns the corresponding graigteal path integral (2.2) into a well-
defined regularized and finite expression, which can be ateduand whose continuum limit can
be studied systematically [7]. The CDT prescription cassis representing the spag&M) of all
Lorentzian spacetimes in terms of a set of triangulated:epvese flat (ie. piecewise Minkowskian)
manifolds.

The idea of approximating curved spacetimes by much simjpig@ngulated objects was intro-
duced in the classical theory of General Relativity by Rel@jeand first applied in the quantum
context in a seminal paper by Bek and Williams [9]. Note that the objectives of the claakic
and quantum theories differ significantly: in the formerearsually wants to approximate a given,
classical solution to the Einstein equation locally as wslpossible. By contrast, when using such
geometries in the path integral, one wants to approximatespiace ofll geometries. It should
be pointed out that just like in the particle case, where thth jintegral in the continuum limit
is dominated by nowhere differentiable paths, typical gei@s contributing to the gravitational
path integral also turn out to be highly nonclassical.

The geometry of the triangulated manifolds is almost everelilat and therefore trivial, and
can carry curvature in a delta function-like manner onlytatwo-dimensional subsimplices (the
triangles), where three or more four-simplices meet. Tagularization in terms of dynamical
lattices implies a vast truncation of the number of degréédseedom, from the local field tensor
guv(X) to a discrete set of edge lengths for the four-simplicess fie information of which pairs
of simplices are glued together pairwise.

For the purposes of causal dynamical triangulations, timglgsial approximatiort,n of ¢
contains all simplicial manifoldg obtained from gluing together at molst four-dimensional,
triangular building blocks of typical edge lengghwith a again playing the role of a UV cut-off
(see Fig. 2). What makes the constructiasalis the fact that the gluing of the Minkowskian four-
simplices respects a global notion of (proper) time, akith&orequirement of global hyperbolicity
usually imposed in classical gravity. The regularized gaional path integral in CDT is then
given by

Zg:ll\DlT — Z ieisReggTr]’ (24)
triangu

ated causal~T
spacetime$ €%, N

2Unlike in the particle case, there is no embedding spacgealnetric spacetime data are defined intrinsically, just
like in the classical theory.
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Figure 2: The two fundamental building blocks of CDT are four-simpBavith flat, Minkowskian interior.
They are spanned by spacelike edges, which lie entirelyinvihatial slices of constant proper timeand
timelike edges, which interpolate between adjacent slidésteger time. A building block of typém, n)
hasm of its vertices in slice, andnin slicet + 1.

where S?®9%€ s the Regge version of the Einstein-Hilbert action assediavith the simplicial
spacetimd’, andCy denotes the order of its automorphism group (see [10, 1hjordcent reviews
[12] for an explicit expression d8¥®99%€as well as other construction details). The discrete volume
N acts as an infrared cutoff. We still need to consider a sigitatntinuum or scaling limit

ZCPT — lim iyl (2.5)
a—0

of (2.4), while renormalizing the original bare couplingnstants of the model, in order to arrive
at a theory of quantum gravify. The two limits in (2.5) are usually tied together by nomigall
keeping fixed a physical four-volumé := a*N. In order to make the evaluation @famenable
to Monte Carlo simulations, one still needs to convert tha swer complex amplitudes to a sum
over real Boltzmann weights. Despite the fact that no slatsifick rotation is known for arbitrary
curved metrics, such a prescription fortunately does daisthe causal triangulations under con-
sideration [7]. As is familiar from lattice field theory, otieen takes — 0, such that the individual
discrete building blocks shrink to zero. This should be @sted with some other approaches to
quantum gravity, which postulate the existence of funddaieliscreteness at the Planck scale, and
consequently identify the lattice spaciagvith the Planck lengtlfp,. In this case one never takes
a continuum limita — 0, which has the disadvantage that the quantum dynamics &l#nck
scale isnot universal and has a large degree of arbitrariness. In CDlicagipns, since the limit
a— 0 can in practice never be reached on a finite lattice, one mais¢ sure that is always much
smaller than the scale at which one is trying to extract playsesults.

Let us summarize the key features of the construction schbusintroduced. Unlike what
is possible in the continuum theory, the path integral (B4)efined directly on the physical con-
figuration space ofjleometries It is nonperturbative in the sense of including geometwhsch
are “far away” from any classical solutions, and it is backgrd-independent in the sense of per-
forming the sum “democratically”, without distinguishirgy given geometry (say, as a preferred
background). However, these attractive properties of ¢gelarized path integral are only useful
becausave are able to evaluate®T quantitatively with an essential role being played by Monte

3Note that the existence of a physically meaningful limitds automatic, but something that needs to be shown.
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Figure 3: The phase diagram of Lorentzian quantum gravity from CDThwi andk, denoting the bare
inverse Newton’s constant and (up to an additive shift) theeltosmological constant. After fine-tuning
to the subspace where the cosmological constant is cr{tiaatamount to performing the infinite-volume
limit), there are three phases: A and B (the Lorentzian anade of the degenerate branched-polymer and
crumpled phases of the Euclidean approach), angwphase C, where an extended, four-dimensional
universe emerges. The parameian CDT parametrizes a finite relative scaling between spaod-time-

like distances which is naturally present in the Lorentzase.

Carlo simulations. These, together with the associatetk{size scaling techniques [13], have en-
abled us to extract information about the nonperturbastengly coupled quantum dynamics of
the system, which is currently not accessible by analyticethods, neither in this nor any other
approach to quantum gravity. This mirrors the role playethltice simulations in determining the
nonperturbative behaviour of QCD (although one should ke@epind that the latter is a theory we
already knowmuchmore about than quantum gravity).

As far as we are aware, CDT is the only nonperturbative agprt@quantum gravity which
has been able to dynamically generate its own, physicadliistee background from nothing but
guantum fluctuations. More than that, because of the miistrs#t-up and the methodology used
(quantum field theory and critical phenomena), the restitained are robust in the sense of being
largely independent of the details of the chosen reguléoizaprocedure and containing few free
parameters. As we already pointed out in Sec. 2 above, ieiefbre one of the rare instances
of a candidate theory of quantum gravity which can potegtiaé falsified. Our investigations
of both the quantum properties and the classical limit of tandidate theory are at this stage
not sufficiently complete to provide conclusive evidenca the have foundhe correct theory of
guantum gravity. However, results until now have been wsgmented and very encouraging, and
have thrown up a number of nonperturbative surprises, sémaioh we will summarize next.

3. Key findings of CDT — the phase diagram

One important lesson learned for nonperturbative grawitat path integrals from CDT quan-
tum gravity is that the ad-hoc prescription of integratingmocurved Euclideaspacesof metric
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signature (++++) instead of the physically correct curvedldntzian spadgnesof metric signa-
ture (—+++) generally leads to inequivalent and @r=4) incorrect results. Euclidean quantum
gravity, as advocated by Hawking and others [14], adopt&tididean version of the path integral
mainly for the technical reason of being able to use real lisigxg—S°") instead of the complex
amplitudes ex@iS®) in its evaluation. The same is done in perturbative quantefd fheory on
flat Minkowski space, where one can rely on the existence ddladefined Wick rotation to relate
correlation functions in either signature, an option teaitavailable in continuum gravity beyond
perturbation theory on a Minkowski background.

CDT quantum gravity has given us the first explicit exampla nbnperturbative gravitational
path integral (in a toy model of two-dimensional gravity)[®]hich is exactly soluble and leads
to distinct and inequivalent results, depending on whethersum over histories is taken over
Euclidean spaces or Lorentzian spacetimes. (More prgctbel latter are Euclidean spaces which
are obtained by Wick rotation — whictioesexist for the class of simplicial spacetimes under
consideration — from Lorentzian spacetimes). Only thoswlies are summed over which possess
a global time slicing with respect to which no spatial toggl@hanges are allowed to occur. After
Wick rotation, this set constitutes a strict subset of aktli€iean (triangulated) spaces. Note that
general Euclidean spaces possess no natural notion of tioausality and in this sense branching
in all directions is always present.

A crucial insight of CDT quantum gravity is that a similar uéisholds also in four dimensions.
The geometric degeneracy of the phases (in the sense afistdtsystems) found in Euclidean
dynamical triangulations and the resulting absence of & gtassical limit [15, 16] can again in
part be traced to the proliferation of branching “baby urdes”. As demonstrated by the CDT
results in [6, 10], the requirement of microcausality (adzseof causality-violating points) of the
individual path integral histories leads to a different gatructure, compared with the previous
Euclidean approach. The breakthrough result of Lorent@BrT is that its phase diagram now
possesses a third andalitatively newphase, in which the universe on large scales is extended and
four-dimensional (Fig. 3), exactly as required by cladsi@aneral Relativity! As indicated on the
figure, to obtain an infinite-volume limit the bare cosmotajiconstanik, has to be fine-tuned
to the critical surface fronabove sinceks > Kj{”t characterizes the region where the (Euclidean)
partition functionZPT exists and is finite.

On the critical surface, phases A and B can be understoodrasiizean analogues of the two
degenerate phases of the Euclidean models, and do not apgeasting from a continuum point
of view [10]. The new and physically interesting phase — nwrevhich below — is phase C. What
is curious about the phase structure of four-dimensionall QDantum gravity is its resemblance
with that of Hdava-Lifshitz gravity [17], which has been spelled out fiert in [18, 19]. It gives
rise to the intriguing conjecture that there may be a unalgghase diagram governing systems of
higher-dimensional, dynamical geometry, and accomogaivariety of gravity theories, some of
which may be anisotropic in space and time. Another questianarises is that of the order of the
phase transitions between the three phases, indicate@ bgdhines in Fig. 3. Their determination
is numerically challenging, and a preliminary investigatof the A-C transition in [20] turned out
inconclusive. Some of these problems have now been overeaoch@ew results on both the A-C
and the B-C transition will appear in due course [21].
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Figure 4: The volume profiles of typical path integral configurationgphases A, B and C (ho averaging
over histories involved). Phase C (bottom figure) is the oher& extended four-dimensional geometries
emerge. The figures shamwly the curved/3(1) — made into bodies of revolution about the horizontal time
axis — and no local fluctuations of geometry.

4. Key findings of CDT — the dynamical emergence of spacetimesave know it

What is the nature of the extended spacetime found in phase@D® quantum gravity,
and what quantitative criteria do we apply to distinguistwsen the three phases? Examining
individual path integral histories will only be of limitedsa, since in the limia — 0 their geometry
will become highly singular, similar to that of the nowheriéeatentiable paths which constitute
the carrier space of the path integral of the nonrelatwiptrticle in the continuum limit [22].
What we must do instead is to define and measure geonggisictum observablegvaluate their
expectation values on the ensemble of geometries and drastusions about the behaviour of the
“quantum geometry” generated by the computer simulatititet §s, the ground state of minimal
Euclidean action).

One such observable is given by the overall shape of the nsgivenore precisely, the three-
volumeVs(T) as a function of proper time. Already by comparing Monte Carlo “snapshots” of
typical shapes, one observes completely different quigktdoehaviours in the three phases (Fig.
4). Remarkably, inside phase C the microscopic buildinghkdsuperposed in the nonperturbative
path integral arrange themselves into an extended quaracesme whose macroscopic shape
is that of the well-knowrde Sitter univers¢23, 11]. This amounts to a highly nontrivial test of
the classical limit, about which it is notoriously difficutt make any definite statements in most
models of nonperturbative quantum gravity. The dynamicatimanism by which this happens is
not understood in detail, however, it is clear that “entfofly other words, the measure of the path
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Figure 5: The average shap®s(1)) of the CDT quantum universe in phase C, fitted to that of Eedlid
de Sitter space (the “round four-sphere”) with rescalegerdime, (V3(1)) = acos’(1/b). Measurements
taken for a universe of four-volumé& = 160.000 and time extensioh = 80. The fit of the Monte Carlo
data to the theoretical curve for the given values@idb is impressive. The vertical boxes quantify the
typical scale of quantum fluctuations scale aro(mdT)).

integral, or the number of times a given Boltzmann factor{ex§) is realized) plays a crucial role in
producing the outcome. It means that the nature of this dassical limit istruly nonperturbative
in the sense that the tentative continuum limit of the patégral is found in a region of the bare
coupling constant space where the entropy of the varioumge® configurations contributes at
the same order of magnitude as the exponential of the acthanwe have pointed out in [20],
this is reminiscent of certain phenomena in condensed nttesics, like the Kosterlitz-Thouless
transition in the XY model.

The manner in which we have identified (Euclidean) de Sittacse from the computer data is
by looking at the expectation value of the volume profié). From the line element of Lorentzian
de Sitter space in proper-time coordinates,

422 t 2
ds = —di2 + 2cosi? (E> 0%, (4.1)
with dQ(23) denoting the line element of the unit three-sphere, one wamediately read off the
classical volume profile

Vs(t) = 2n2(ccosh(t—:)3, c = const (4.2)

which fort > 0 gives rise to the familiar, exponentially expanding urses thought to give an
accurate description of our own universe at late times, whatter can be neglected compared
with the repulsive force due to the positive cosmologicalstant. Because the CDT simulations for
technical reasons have to be performed in the Euclideameggive must compare the expectation
value of the shape with those of the analytically continugaression of (4.2), with respect to the
Euclidean time := —it. After normalizing the overall four-volume and adjustirgmputer proper

10
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Figure 6: The spectral dimensioDs(o) of the CDT-generated quantum universe (lower curve, eraos b
not included), contrasted with the corresponding curvafdassical spacetime, which for sufficiently short
distances is simply given by the constant funciiio) = 4.

time by a constant to match continuum proper time, the agavatyme profile obtained is depicted
in Fig. 5.

A few more things are noteworthy about this result. Firsgpike the fact that the discrete
CDT construction treats space and time differently, attleaslarge scales the full isotropy is
restored by the ground state of the theory for precisely tiée of identifying proper time in the
continuum. Second, the computer simulations necessarilg to be performed for finite, compact
spacetimes, which also means that a specific choice has tabe far the spacetime topology.
For simplicity, to avoid having to specify boundary conulits, it is usually chosen to & x S,
with time compactifietl and spatial slices which are topological three-spheresat\igtreassuring
is the fact that the bias this choice could in principle haateoduced is “corrected” by the system,
which clearly is driven dynamically to the topology of a feaphere (or as close to it as is permitted
by the kinematical constraint imposed on the three-voluntgch is not allowed to vanish at any
time). Lastly, we have also analyzed the quantum fluctuatemound the de Sitter background;
they match to good accuracy a continuum saddlepoint caicnlan minisuperspace [11], which is
one more indication that we are indeed on the right track.

5. Key findings of CDT — getting a handle on Planckian physics

Having presented some of the evidence that CDT quantumtgrdees possess the correct
classical limit, let us now turn to theewphysics we are ultimately after, namely, what happens
to gravity and the structure of spacetime at or near the Rlanale. One way of probing the
short-scale quantum structure of the universe is by setiingdiffusion proces®n the ensemble
of spacetimes, and studying an associated quantum obkerfly a classical manifold, it is well
known that the speed with which an initially localized dgfon process spreads depends on the
dimension of the space. Conversely, given a spdoaf unknown properties, it can be assigned
a so-calledspectral dimension Dby studying the leading-order behaviour of the averagemetu
probability %y (o) (of random diffusion paths o starting and ending at the same pothias a

4the period is chosen much larger than the time extensioreafitiverse and does no influence the result

11
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function of the diffusion timeo,
1 d 1 2/D
= — : _ < S .
T (0) V(M)/Md xP(x,x,o)DaDS/z, o <VEs, (5.1)

whereV (M) is the volume oM, andP(x,y; o) the solution to the heat equation bh Diffusion
processes can be defined on very general spaces, for examflactals, which are partially char-
acterized by their spectral dimension (usually not an etegee [24]). Relevant for the application
to quantum gravity is that the expectation va{ug, (o)) can be measured on the ensemble of CDT
geometries, giving us the spectral dimension of the dynaligigenerated quantum universe, with
the astonishing result thts(o) depends on the linear scaléo probed [25]! The measurements
from CDT quantum gravity, extrapolated to all valuesogfiead to the lower curve in Fig. 6, with
asymptotic value®s(0) = 1.824 0.25, signalling highly nonclassical behaviour near the dan
scale, andDg(») = 4.02+ 0.1, which is compatible with the expected classical behavide
conclude that the quantum geometry dynamically generage@r is definitely not a classical
manifold on short scales.

What is even more remarkable is the fact that the same kinthat-scale “dynamical di-
mensional reduction” has been found recently in a coupleiftérdnt quantum field-theoretic
approaches to quantum gravity, namely, a nonperturbaéwermalization group flow analysis
of gravity [26] and the novel Hava-Lifshitz quantum gravity already mentioned earli2¥][
Whether there is a common underlying reason for this renidekzoincidence — which might tell
us something deeper about the nature of quantum gravity ainsno be understood. Within the
CDT framework, further indications for nonclassicalityPdanckian distances come from measure-
ments of geometric structures in spatial slizes const [10], including a measurement of their
Hausdorff and spectral dimensions, and of shell deconiposiof both space and spacetime [28].

6. Quantum gravity - quo vadis?

For a long time now, there has been plenty of abstract reagami the nature of nonperturba-
tive quantum gravity, that is, what the theory should loék land what kind of properties it should
haveif only we knew what it was. On the one hand, it is of course naturappeal to general
principles in the absence of any experimental or obsenmvatiguidance on how to construct the
theory. On the other hand, our so-called intuition — mostigning from studying classical gravity
and quantum fields on a fixed background — may seriously ndsleavhen speculating about the
nature of spacetime at the Planck scale. What lattice qoagtavity (in the form of dynamical
triangulations or causal dynamical triangulations) padesgi us with is an “experimental lab”, a cal-
culational framework to study systems of fluctuating geoynguantitativelyin a nonperturbative
regime. In dimension two, where comparisons with anallticadels are available, this leads to
sensible results. In dimension four, it is currently theyomhy to extract nonperturbative infor-
mation about these systems. In particular, it has uncoveegdral completely unexpected, but
presumably generic features, for example, the fact thasiteature of the geometry can make
a crucial difference, the fact that a superpositiordafimensional geometries is not necessarily
d-dimensional, indeed, that such superpositions are yssalldegenerate that they possess no
classical limit at all, and the fact that the conformal dgeice of the Euclidean path integral can
be cured by “entropic contributions”.
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CDT's toolbox has enabled us to uncover these nonpertugbatioperties and at the same
time make quantitative statements about covariant prggeof quantum geometry, including its
dimension and volume profile. In principle the framework isoaable to test nonperturbative
predictions from other fundamental theories containinavigy, if and when they will be made,
subject only to the usual humerical limitations of the ttiClearly, much remains to be done, but
the results already obtained underline the power andyutfittattice methods, also in situations
where spacetime itself is dynamical.
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