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An old and apparently persistent problem in numerical lattice QCD is that the simulations tend to

get trapped in a sector of fixed topological charge when the lattice spacing is taken to zero. The

effect sets in very rapidly and may invalidate the simulation results in certain cases. In this talk,

the issue is discussed using the Wilson flow as a tool. The flow has a simple scaling behaviour

and allows one to understand how exactly the topological sectors emerge in the continuum limit.

Further studies however suggest that the observed slowdownof the simulations at small lattice

spacings is only partly caused by the emergence of the sectors.
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1. Introduction

At present all widely used simulation algorithms for lattice QCD with two or more flavours of
sea quarks are based on some version of the HMC algorithm [1] (see ref. [2] for a recent review).
The computer time required for such simulations depends on the time needed foran update step,
the integrated autocorrelation times of the observables of interest and the desired statistics. As a
function of the lattice spacinga, and if the algorithm is implemented as usual, the first factor scales
roughly likea−5, but the autocorrelation times tend to be difficult to determine and are often not
known reliably if they are not small.

Large autocorrelation times are typically observed in the case of quantities related to the topo-
logical charge of the gauge field. While the definition of the charge on the lattice is ambiguous to
some extent, experience suggests that the autocorrelation times are largely insensitive to the exact
choices one makes. For illustration a time series of charge measurements is plotted in fig. 1. The
presence of strong autocorrelations is evident in this example, particularlyso in the shaded region,
where the charge never changes sign and instead oscillates around a value of−10. Note that most
QCD simulations published to date are much shorter than the run shown in the figure.

The integrated autocorrelation times of physical quantities tend to grow when the continuum
limit is approached. Depending on the theory, the algorithm and the observable, the asymptotic
scaling behaviour can be very different, but is normally power-like in the inverse lattice spacing
with an exponentz≤ 2. Del Debbio, Panagopoulos and Vicari [3] however found some time ago
that the topological charge in the SU(3) gauge theory has a much more rapidly (perhaps expo-
nentially) increasing autocorrelation time if the standard link-update algorithms are used. Further
studies by Schaefer, Sommer and Virotta [4] later showed that the HMC algorithm is similarly in-
efficient and there is ample evidence that the problem persists when the seaquarks are added to the
theory [4 – 6].

In this talk, a few steps are taken towards a better understanding of the dynamics of the HMC
algorithm and the mechanism that leads to the dramatic slowdown of the simulations at small lattice
spacings. Issues to be addressed are how exactly the topological sectors emerge in the continuum
limit, what the slow modes of the gauge field might be and whether perhaps thereis a simple way
out. The discussion is largely based on a new tool, the Wilson flow [7, 8], which is of some interest
in its own right.

2. Autocorrelations

2.1 Scaling behaviour

Systematic scaling studies of autocorrelation times in lattice QCD have so far beenlimited
to the case of the pure gauge theory [3, 4]. In all these studies, the autocorrelation time of the
topological charge turned out to increase at least likea−5 at lattice spacingsa below 0.1 fm or so.
The algorithms considered (the HMC, the DD-HMC and the well-known link-update algorithms)
appear to behave similarly in this respect. In particular, once the link-visiting frequency is divided
out, the block size used in the DD-HMC algorithm does not have a significantinfluence on the
autocorrelation times [4].

2



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
1
5

Topology, the Wilson flow and the HMC algorithm M. Lüscher

15000 20000 25000 30000 35000

molecular-dynamics time

−20

−10

0

10

20

to
po

lo
gi

ca
l c

ha
rg

e 

Figure 1: History of the topological charge in a simulation of the pureSU(3) gauge theory on a 64×323

lattice with spacinga= 0.07 fm. The plain HMC algorithm was used in this test run, with atrajectory length
of 2 units of molecular-dynamics time and an acceptance rateof 83%.

The onset of the rapid growth of the autocorrelation time of the topological charge, and thus
its value at a given lattice spacing, however depends on the chosen lattice action and the simulation
algorithm. Increasing the length of the molecular-dynamics trajectories in the HMC algorithm can
be beneficial [4], for example, while the addition of six-link terms to the Wilson plaquette action
may have an adverse effect [4, 5].

When the sea quarks are included in the simulations, the situation becomes considerably more
complicated, because the autocorrelations may now also depend on the number of quark flavours,
the quark masses and chosen the fermion action [4 – 6]. These dependencies and the one on the
lattice spacing remain to be studied in detail, but the experience made so far (which is sometimes
only based on a visual inspection of measurement histories) shows that theautocorrelation time of
the topological charge is again very rapidly growing when the lattice spacingis reduced from 0.1
fm to 0.05 fm or even smaller values.

If the leading exponential autocorrelation time is assumed to grow proportionally to a−5, the
total computational effort required for HMC simulations of QCD is expected toscale likea−10 at
fixed physics, i.e. the cost of the simulations increases by about three orders of magnitude when
the lattice spacing is divided by 2. This estimate may be a bit pessimistic, but it is quiteclear that
the simulations required for safe extrapolations to the continuum limit are extremely challenging.
Algorithmic improvements or viable ways of bypassing the slowing down of the simulations are
certainly highly desirable at this point.

2.2 Autocorrelation effects in short runs

A question often asked in this context is whether the simulations really need to bevery much
longer than the leading exponential autocorrelation time. In particular, if the quantities of interest
are only weakly coupled to the slow modes of the algorithm, the results obtained inshorter runs
may conceivably be correct within statistical errors.

In general, the expectation values calculated in such short runs must be expected to be biased
to some extent. Considering again the measurement history plotted in fig. 1, forexample, it is clear
that the topological charge is incorrectly sampled in this case if runs not very much longer than 5000
molecular-dynamics time units are performed. The expectation values of most observables are then
affected by terms inversely proportional to the space-time volume [9, 10]. Physical quantities like

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
1
5

Topology, the Wilson flow and the HMC algorithm M. Lüscher

0 200 400 600 800 1000
time lag t

0.0

0.2

0.4

0.6

0.8

1.0
ρ(t)

τ0 = 1000

τ1 = 50

Figure 2: Example of a normalized autocorrelation functionρ(t) that is dominated by two modes with
exponential autocorrelation timesτ0 ≫ τ1.

the masses of theη andη ′ mesons, but also hadronic matrix elements of pseudo-scalar densities
are likely to be strongly sensitive to these effects.

When arguing for short runs, one would need to provide a practical procedure that allows the
effects of the slow modes on the calculated expectation values to be estimated. Whether they are
in fact negligible in the cases of interest is otherwise difficult to tell and one isleft with results that
may or may not be correct.

2.3 Statistical error estimation in presence of slow modes

Large exponential autocorrelation times can also lead to an underestimation ofintegrated au-
tocorrelation times and thus of the associated statistical errors. To illustrate thispoint, consider a
normalized autocorrelation function

ρ(t) = |c0|2e−t/τ0 + |c1|2e−t/τ1 + . . . (2.1)

which is dominated by two eigenmodes of the simulation transition probability, a slow mode with
exponential autocorrelation timeτ0 and a fast mode with autocorrelation timeτ1 ≪ τ0 (see fig. 2).
The coefficients|c0|2 and |c1|2 in this formula measure how strongly these modes couple to the
observable considered. Note that the integrated autocorrelation time

τint ≃ τ0|c0|2 + τ1|c1|2 + . . . (2.2)

is equal to the area under the curve shown in the figure. Whetherτint can be easily estimated now
depends on whether the area under the tail of the curve dominates or not. If it does not, i.e. if
τ0|c0|2 ≪ τ1|c1|2, the relevant exponential autocorrelation time isτ1 and the statistical error is
correctly obtained from simulations a few hundred times longer thanτ1. Runs very much longer
thanτ0 are however required in the other case to be able to control the situation.

Note that the contribution of the slow mode to the statistical error is not guaranteed to be
negligible even if the coupling|c0|2 is very small. These cases are actually particularly difficult to
treat correctly, because the autocorrelation function in the tail is very small,while the area under
the tail may not be so. Since the autocorrelation function itself can only be calculated up to some
statistical uncertainty, it may then be quite impossible to exclude this case, except whenτ0 is known
or can at least be bounded from above [4].
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Figure 3: Equation (3.1) generates a flow in the space of lattice gauge fields. On a finite lattice, the existence,
smoothness and uniqueness of the flow is rigorously guaranteed at all flow times [7]. Moreover, at any given
time t, the mappingU →Vt is an invertible transformation of field space, because the flow can be integrated
both forward and backward in time.

3. Wilson flow

The high-frequency components of the gauge field are usually weakly coupled to the slow
modes of the HMC algorithm and tend to be efficiently updated. What exactly one means by the
smooth components of the field is not entirely clear, however, and even lessso which of their
properties (apart from the topological charge) are slowly sampled by thealgorithm. As explained
in the following, the Wilson flow [7, 8] is a renormalizable smoothing operation that allows these
questions to be addressed on theoretically solid ground.

3.1 Flow equation

For any given lattice gauge fieldU(x,µ), the first-order differential equation

V̇t(x,µ) = −g2
0

{

∂x,µSw(Vt)
}

Vt(x,µ), Vt(x,µ)|t=0 = U(x,µ), (3.1)

defines a trajectoryVt(x,µ) of fields parameterized by the “flow time”t (see fig. 3; differentiation
with respect tot is abbreviated by a dot). In this equation,Sw(Vt) denotes the Wilson plaquette
action [11] of the fieldVt at gauge couplingg0 and∂x,µSw(Vt) its (Lie algebra valued) variation
with respect to the link variableVt(x,µ). Note that the coupling cancels in the flow equation.

Along the Wilson flow, the plaquette action decreases monotonically,Ṡw ≤ 0, and the gauge
field tends to become smoother. The flow is in fact generated by infinitesimal “stout” link-smearing
steps [12] and thus shares some properties with this popular smoothing procedure. Eventually
the flow drives the field towards the stationary points of the action, but contrary to what may be
assumed, the large-time regime is a highly non-perturbative one in QCD. In particular, it may not
be meaningful to study the large-time behaviour of the flow separately from the continuum limit of
the theory.
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3.2 QED — a soluble case

In the continuum limit, the flow equation (3.1) assumes the form

Ḃµ = DνGνµ , Bµ
∣

∣

t=0 = Aµ , (3.2)

whereAµ(x) is the fundamental gauge field,Bµ(t,x) the time-dependent gauge field andGµν(t,x)
the associated field tensor. In QED the equation is a linear diffusion equation, whose solution is
given by

Bµ(t,x) =
∫

d4yKt(x−y)Aµ(y)+gauge terms, Kt(z) =
e−

z2
4t

(4πt)2 . (3.3)

The flow thus averages the gauge field over a spherical range with mean-square radius equal to
√

8t.
Note that, as is already clear from eq. (3.2), the flow timet has engineering dimension[length]2.

Since the field generated by the flow is linearly related to the fundamental gauge field, its
correlation functions

〈Bµ1(t,x1) . . .Bµn(t,xn)〉 = en
0

∫

d4y1 . . .d4ynKt(x1−y1) . . .Kt(xn−yn)

×G0(y1, . . . ,yn)µ1...µn +gauge terms (3.4)

are proportional to the (full, bare) photonn-point functionsG0(y1, . . . ,yn)µ1...µn. A power of the
bare electron chargee0 appears in this equation, because the canonically normalized photon field
is e0Aµ rather thanAµ (which is normalized so that the covariant derivatives do not involve the
charge). Note also that the heat kernelsKt(xk − yk) play the rôle of smooth test functions in this
formula. In particular, the renormalization of the correlation function is achieved simply by renor-
malizing the bare charge and the photonn-point function according to

e0 = Z−1/2
3 eR, G0 = Zn/2

3 GR. (3.5)

The fact that bothe0 andG0 renormalize with the same renormalization constantZ3 is a conse-
quence of the gauge Ward identity in this theory (a gauge-invariant regularization is assumed here).
Sinceen

0G0 = en
RGR, this shows that the fieldBµ(t,x) is, at all positive flow timest and up to its

gauge degrees of freedom, arenormalized smooth gauge field.

Provided the bare charge is expressed through the renormalized one, the correlation functions
of the field tensorGµν thus do not require any renormalization and converge to well-defined smooth
functions of the space-time coordinates when the regularization of the theory is removed. More-
over, since QED is asymptotically free at low energies, the behaviour of thecorrelation functions
at large flow times is described by leading-order perturbation theory. A short calculation then leads
to the formula

lim
t→∞

{t2〈GµνGµν〉} =
3e2

R

32π2 , (3.6)

which shows that the field obtained by the Wilson flow contains some interesting physical infor-
mation.

6
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Figure 4: Plot of t2〈E〉 in the pure SU(3) gauge theory as a function of the flow timet given in units of
the Sommer scaler0 [13, 14]. The thick solid line was obtained through numerical simulation of a 96×483

lattice with spacinga = 0.05 fm. One-loop perturbation theory [eq. (3.8)] and the known value of theΛ-
parameter [15] yield the dashed curve with an error margin (grey area) deriving from the error onr0Λ.

3.3 Properties of the Wilson flow in QCD

In QCD the flow equation is non-linear and the renormalization of the theory is much more
complicated than in QED. Whether the Wilson flow generates a renormalized gauge field is how-
ever a question that can be studied in perturbation theory. In particular, the expectation value of the
gauge-invariant density

E = −1
2tr{GµνGµν} (3.7)

can be easily worked out to next-to-leading order in the gauge coupling. Dimensional regularization
may be used in this calculation and it then turns out that〈E〉 does not require renormalization to
this order, i.e. the divergent terms are all canceled by the renormalization of the coupling. In the
MS scheme, the one-loop formula obtained in this way is [8]

〈E〉 =
3

4πt2 α(q){1+k1α(q)+ . . .} , q = (8t)−1/2, (3.8)

k1 = 1.0978+0.0075×Nf, (3.9)

whereNf denotes the number of massless sea quarks and the running couplingα(q) is evaluated at
a momentum scaleq equal to the inverse of the leading-order smoothing range of the flow.

Beyond perturbation theory, the expectation value ofE can be computed straightforwardly
using the lattice formulation of the theory and numerical simulations. An accuratenumerical inte-
gration of the flow equation (3.1) is required in these calculations, but the computer time needed for
the integration is negligible in practice if a suitable higher-order integrator is used [8]. The result
of a computation along these lines is plotted in fig. 4 in a range of the flow time corresponding to
smoothing ranges from about 0.2 to 0.5 fm (the statistical errors are not visible on the scale of the

7
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Figure 5: Scaling behaviour of the reference timet0 in the pure SU(3) gauge theory. The data (full points)
were obtained on lattices of size 48×243, 64×323 and 96×483 with spacings approximately equal to 0.1,
0.07 and 0.05 fm, respectively. The continuum limit (open point) is reached through a linear fit ina2 of the
three data points (solid line).

plot). Since QCD is asymptotically free, the perturbation expansion (3.8) onlyapplies at small flow
times, but as can be seen from the curves shown in fig. 4, the transition from the small-time to the
non-perturbative regime is very smooth. Note thatt2〈E〉 increases roughly linearly witht in the
non-perturbative regime, at least so in the range shown in the plot, a behaviour which is completely
different from the one in QED.

If 〈E〉 does not require renormalization, one expectst2〈E〉 to be a universal function oft/r2
0 up

to lattice effects that vanish proportionally to a positive power of the lattice spacing. The scaling
can be checked by introducing a reference timet0 through the implicit equation

t2〈E〉
∣

∣

t=t0
= 0.3 (3.10)

(see fig. 4). Simulations at three values of the lattice spacings then show thatthe dimensionless
ratio

√
8t0/r0 does in fact smoothly converge to the continuum limit, the lattice-spacing effects

being less than a percent in the range covered by the simulations (fig. 5). Little doubt thus remains
that the Wilson flow maps the gauge field to a renormalized smooth field as in QED.

4. Topological sectors

The question of how exactly the topological sectors emerge in lattice QCD can now be an-
swered by performing the field transformationU →V = Vt0 in the functional integral,t0 being the
reference flow time introduced in the previous section. The smoothing rangeis about 0.5 fm in
this case, i.e. on average the fluctuations of the gauge field with wavelengthsup to the confinement
radius are smoothed out. Somewhat surprisingly, the Jacobian of the transformation can be analyti-
cally expressed through the Wilson action [7]. The expectation value of any observableO(U) then
assumes the form

〈O〉 =
1
Z

∫

D[V]O(U)e−S̃(V), (4.1)

8
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Figure 6: Probability for the value ofsp [eq. (4.3)] on a given plaquettep to be above a specified thresholds.
The three curves were obtained in the pure SU(3) gauge theorywith Wilson plaquette action, using the same
representative ensembles of gauge-field configurations as in the scaling test reported in fig. 5.

where the action is given by

S̃(V) = S(U)+
16g2

0

3a2

∫ t0

0
dt Sw(Vt). (4.2)

In this formula, the fieldsU andVt are considered to be functions ofV andS(U) denotes the action
of the theory (including the quark determinants if any) before the transformation.

Both terms in the action (4.2) tend to suppress large values of the plaquette observable

sp = Retr{1−V(p)} (4.3)

(whereV(p) is the product of the link variablesV(x,µ) around the plaquettep) and thus force the
plaquette loops to be close to unity. Sincesp is a field of dimension 4, representing the square of
the gauge-field tensor in the plaquette plane, its expectation value is in fact expected to scale like
a4 in the continuum limit. Numerical studies confirm this behaviour and show that large values of
sp are indeed very strongly suppressed (see fig. 6).

Many years ago, a theorem was established [16, 17] which states that thespace of all lattice
gauge fields satisfying a certain smoothness condition decomposes into topological charge sectors
very much like the space of continuous fields in the classical continuum theory. In particular, the
theorem applies to the subspace of SU(3) gauge fieldsV which satisfy

sp < 0.067 for all plaquettesp. (4.4)

According to the empirical results reported in fig. 6, and since the number ofplaquettes in a fixed
physical volume grows proportionally toa−4, the fields that donot fulfill this condition occur with
a probability of ordera6. In the functional integral (4.1), the weight of these configurations (and
thus of the region of field space, where the assignment of the topological charge is ambiguous) is
therefore rapidly decreasing when the lattice spacing is taken to zero. In lattice gauge theory, the
emergence of the topological sectors is thus seen to be a dynamical phenomenon, which sets in
close to the continuum limit.

9
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t/t0 τint[Q] τint[Q2] τint[E]

0.18 65(5) 30(2) 25(2)

0.35 67(5) 32(2) 35(2)

0.70 68(6) 33(2) 44(3)

t/t0 τint[Q] τint[Q2] τint[E]

0.18 614(90) 284(34) 55(4)

0.36 615(90) 286(34) 69(5)

0.72 615(90) 286(34) 86(6)

Table 1: Integrated autocorrelation times in the pure SU(3) gauge theory with Wilson action, measured on a
48×243 lattice with spacinga= 0.1 fm (left table) and on a 64×323 lattice with spacinga= 0.07 fm (right
table). In both cases, the HMC algorithm with a trajectory length of 2 and an acceptance rate of 83% was
used. All autocorrelation times and the trajectory length are given in units of molecular-dynamics time.

5. Slow modes of the HMC algorithm

The field transformation considered in the previous section maps the molecular-dynamics tra-
jectories generated by the HMC algorithm to trajectories of the transformed field V =Vt0. At lattice
spacings where the regions of field space “between the topological sectors” are strongly suppressed,
it is unlikely that such a trajectory leads from one sector to another, because the fields along the
trajectories are, to a good approximation, distributed according to their weight in the functional in-
tegral. The emergence of the sectors and the freezing of the topological charge in HMC simulations
are thus directly related to each other.

5.1 Do the smoothed fields move slowly?

The algorithm may however slow down for other reasons as well and thereis no guarantee that
the gauge field is efficiently updated in a fixed sector. In particular, the smooth fields obtained by
the Wilson flow at flow timet > 0 may conceivably be slowly moved through configuration space,
in which case the autocorrelation times of local observables constructed from these fields (such as
E) are expected to be large.

The measured autocorrelation times ofE listed in table 1 are actually monotonically increasing
with the flow timet and reach values up to 10 times the autocorrelation time of the usual plaquette
observable att = 0. On the other hand, when the lattice spacing is reduced, they do not appear to
grow as rapidly as the autocorrelation times of the topological chargeQ (in these studies,E and
the charge density were both defined using the same symmetric plaquette-loop expression for the
gauge-field tensor at the specified flow time). The relatively slow updating of the smoothed field
and the charge freezing are thus two different effects, where one is not obviously driving the other.

5.2 Open boundary conditions

One may be inclined to conclude at this point that the emergence of the topological sectors at
small lattice spacings is the principal and perhaps only cause for the presence of very rapidly grow-
ing autocorrelation times in HMC simulations. However, when choosing open instead of periodic
boundary conditions in the physical time direction, the topological sectors disappear and the space
of smooth fields becomes connected. One thus expects to observe only moderately increasing au-
tocorrelation times in this case if the slowdown of the algorithm is indeed mainly caused by the
separation of the sectors.

10
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τint[Q] τint[Q2] τint[E]

periodic 68(6) 33(2) 44(3)

open 61(6) 27(2) 38(3)

τint[Q] τint[Q2] τint[E]

periodic 615(90) 286(34) 86(6)

open 384(56) 155(20) 77(6)

Table 2: Comparison of autocorrelation times measured on lattices with periodic and open boundary condi-
tions in the physical time direction. The lattices are the same as in table 1 (left:a = 0.1 fm, right: a = 0.07
fm), the HMC parameters are also the same and the flow timet is equal to 0.7× t0 in all cases.

A lattice with time extentT and open boundary conditions in time does not wrap around in
this direction, i.e. there are no terms in the action which couple the field variablesat timex0 = 0 to
those at the largest timex0 = T −a. In a simulation program for periodic lattices, these boundary
conditions can often be implemented simply by setting the time-like link variables at the largest
time to zero. Note that open boundary conditions preserve the gauge symmetry. In the continuum
theory, they amount to imposing Neuman boundary conditions,

F0k(x)|x0=0 = F0k(x)|x0=T = 0, k = 1,2,3, (5.1)

on the gauge field and homogeneous Dirichlet (Schrödinger functional) boundary conditions on the
quark fields,Fµν being the field tensor of the fundamental gauge field. The field space becomes
topologically trivial when these boundary conditions are chosen. In particular, instantons can be
smoothly moved in and out of the volume through the boundaries atx0 = 0,T.

The figures listed in table 2 show that the situation is in fact somewhat improved when passing
from periodic to open boundary conditions (in both cases,Q denotes the sum of the topological
charge density over all lattice points). As a function of the lattice spacing, theautocorrelation time
of Q is however rapidly growing independently of the chosen boundary condition. On the periodic
lattices, the quantization of the topological charge thus appears to be only one of several causes of
the slowdown of the HMC algorithm.

5.3 Instantons and the chiral limit

One of the distinguishing features of non-abelian gauge theories is the existence of the instan-
ton solutions of the classical field equations. The fact that the action has a large manifold of nearly
stationary points (the configurations built from many distant instantons and anti-instantons) may
conceivably play an important dynamical rôle in these theories, but so farit proved to be difficult
to actually show this. In the present context, the observation is perhaps ofsome relevance, because
the fields generated by the Wilson flow at large flow times tend to be close to the stationary points
of the action.

In QCD with light sea quarks, the fluctuations of the topological charge aresuppressed and the
smooth fields obtained by the Wilson flow may therefore be characteristically different from the
ones in the pure gauge theory. The slow modes of the HMC algorithm consequently need not be the
same and the autocorrelation times of the usual quantities may turn out to have a significant depen-
dence on the quark masses. However, as already mentioned, systematic studies of autocorrelation
times await to be performed in QCD with dynamical quarks.
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6. Conclusions

Numerical lattice QCD rests on the assumption that simulations at sufficiently small lattice
spacings can eventually be performed to be able to control the discretizationerrors. It is therefore
of central importance to overcome the poor scaling behaviour of the currently available simulation
algorithms. Finding better algorithms is difficult, however, and probably requires a more detailed
understanding of why the HMC algorithm slows down when the lattice spacing istaken to zero.

The Wilson flow is a useful tool in this context, because it allows the properties of the gauge
field at different length scales to be studied consistently with the renormalization of the theory. In
particular, the way in which the topological sectors emerge close to the continuum limit is made
transparent through the flow. The emergence of these sectors is certainly one of the principal causes
of the slowdown of the HMC algorithm, but the fact that the situation improves only slightly on
lattices with open boundary conditions is a bit surprising and remains unexplained. It seems safe
to conclude, however, that there are important further sources of inefficiency and that the problem
is likely to persist at fixed topological charge (the rapid slowdown of the algorithm is in this case
expected to be revealed when considering the sum of the charge density over half the lattice).

Choosing open boundary conditions in the physical time direction is nevertheless an inter-
esting option, because the barriers between the sectors disappear in this case, while the transfer
matrix (and thus much of the physics) is the same as with periodic boundary conditions. From
the point of view of the simulation algorithms, the absence of the barriers represents an important
simplification. Tunneling transitions are then not required anymore and one isleft with the task of
finding an algorithm that moves the fieldVt (at, say,t = t0) efficiently through the space of smooth
configurations.

Acknowledgments

I am indebted to Filippo Palombi, Stefan Schaefer and Rainer Sommer for useful discussions
on various issues related to this talk. All numerical simulations reported here were performed on a
dedicated PC cluster at CERN. I am grateful to the CERN management for providing the required
funds and to the CERN IT Department for technical support.

References

[1] S. Duane, A. D. Kennedy, B. J. Pendleton, D. Roweth,Hybrid Monte Carlo, Phys. Lett.B195(1987)
216.

[2] M. Lüscher,Computational strategies in lattice QCD, Lectures given at the Summer School on
“Modern perspectives in lattice QCD”, Les Houches, August 3-28, 2009, arXiv:1002.4232 [hep-lat].

[3] L. Del Debbio, H. Panagopoulos, E. Vicari,θ -dependence of SU(N) gauge theories, JHEP08 (2002)
044.

[4] S. Schaefer, R. Sommer, F. Virotta,Investigating the critical slowing down of QCD simulations, PoS
(LAT2009) 032;Critical slowing down and error analysis in lattice QCD simulations,
arXiv:1009.5228 [hep-lat].

12



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
1
5

Topology, the Wilson flow and the HMC algorithm M. Lüscher

[5] D. J. Antonio et al. (RBC and UKQCD Collab.),Localization and chiral symmetry in 2+1 flavor
domain wall QCD, Phys. Rev.D77 (2008) 014509.

[6] A. Bazavov et al. (MILC Collab.),Topological susceptibility with the asqtad action, Phys. Rev.D81
(2010) 114501.

[7] M. Lüscher,Trivializing maps, the Wilson flow and the HMC algorithm, Commun. Math. Phys.293
(2010) 899.

[8] M. Lüscher,Properties and uses of the Wilson flow in lattice QCD, JHEP08 (2010) 071.

[9] R. Brower, S. Chandrasekharan, J. Negele, U.-J. Wiese,QCD at fixed topology, Phys. Lett.B560
(2003) 64.

[10] S. Aoki, H. Fukaya, S. Hashimoto, T. Onogi,Finite-volume QCD at fixed topological charge,
Phys. Rev.D76 (2007) 054508.

[11] K. G. Wilson,Confinement of quarks, Phys. Rev.D10 (1974) 2445.

[12] C. Morningstar, M. Peardon,Analytic smearing of SU(3) link variables in lattice QCD,
Phys. Rev.D69 (2004) 054501.

[13] R. Sommer,A new way to set the energy scale in lattice gauge theories andits applications to the
static force andαs in SU(2) Yang–Mills theory, Nucl. Phys.B411(1994) 839.

[14] M. Guagnelli, R. Sommer, H. Wittig (ALPHA collab.),Precision computation of a low-energy
reference scale in quenched lattice QCD, Nucl. Phys.B535(1998) 389.

[15] S. Capitani, M. Lüscher, R. Sommer, H. Wittig (ALPHA collab.),Non-perturbative quark mass
renormalization in quenched lattice QCD, Nucl. Phys.B544(1999) 669.

[16] M. Lüscher,Topology of lattice gauge fields, Commun. Math. Phys.85 (1982) 39.

[17] A. Phillips, D. Stone,Lattice gauge fields, principal bundles and the calculationof the topological
charge, Commun. Math. Phys.103(1986) 599.

13


