PROCEEDINGS

OF SCIENCE

Topology, the Wilson flow and the HMC algorithm

M. Luscher *
CERN, Physics Department, 1211 Geneva 23, Switzerland
E-mail: | uscher @mi | . cern. cH

An old and apparently persistent problem in numericaldat@QCD is that the simulations tend to
get trapped in a sector of fixed topological charge when ttiedaspacing is taken to zero. The
effect sets in very rapidly and may invalidate the simulatiesults in certain cases. In this talk,
the issue is discussed using the Wilson flow as a tool. The femsvahsimple scaling behaviour
and allows one to understand how exactly the topologicabseemerge in the continuum limit.
Further studies however suggest that the observed slowdbwre simulations at small lattice
spacings is only partly caused by the emergence of the sector
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Topology, the Wilson flow and the HMC algorithm M. LUscher

1. Introduction

At present all widely used simulation algorithms for lattice QCD with two or moreflas of
sea quarks are based on some version of the HMC algor[ihm [1] (s€B]rfr a recent review).
The computer time required for such simulations depends on the time neededdpdate step,
the integrated autocorrelation times of the observables of interest anddineddtatistics. As a
function of the lattice spacing, and if the algorithm is implemented as usual, the first factor scales
roughly likea=®, but the autocorrelation times tend to be difficult to determine and are often not
known reliably if they are not small.

Large autocorrelation times are typically observed in the case of quantiaésdéo the topo-
logical charge of the gauge field. While the definition of the charge on thedagti@mbiguous to
some extent, experience suggests that the autocorrelation times are lasgesitine to the exact
choices one makes. For illustration a time series of charge measurements tipldige[]. The
presence of strong autocorrelations is evident in this example, particataitythe shaded region,
where the charge never changes sign and instead oscillates around afval0. Note that most
QCD simulations published to date are much shorter than the run shown in the figu

The integrated autocorrelation times of physical quantities tend to grow whesotitinuum
limit is approached. Depending on the theory, the algorithm and the olrerthe asymptotic
scaling behaviour can be very different, but is normally power-like in thierse lattice spacing
with an exponentz < 2. Del Debbio, Panagopoulos and Vicdti [3] however found some tire ag
that the topological charge in the SU(3) gauge theory has a much moréyrgmdhaps expo-
nentially) increasing autocorrelation time if the standard link-update algorithengsed. Further
studies by Schaefer, Sommer and Viroffa [4] later showed that the HMGithigas similarly in-
efficient and there is ample evidence that the problem persists when theas&a are added to the
theory [4-[6].

In this talk, a few steps are taken towards a better understanding of thendygof the HMC
algorithm and the mechanism that leads to the dramatic slowdown of the simulatsonalHattice
spacings. Issues to be addressed are how exactly the topologicatsrotrge in the continuum
limit, what the slow modes of the gauge field might be and whether perhapsgstesimple way
out. The discussion is largely based on a new tool, the Wilson floly [7, 8§hvita of some interest
in its own right.

2. Autocorrelations

2.1 Scaling behaviour

Systematic scaling studies of autocorrelation times in lattice QCD have so faiiingten
to the case of the pure gauge thediy[[3, 4]. In all these studies, theoawiation time of the
topological charge turned out to increase at leastdikeat lattice spacinga below Q1 fm or so.
The algorithms considered (the HMC, the DD-HMC and the well-known lintalie algorithms)
appear to behave similarly in this respect. In particular, once the link-visitatgiéncy is divided
out, the block size used in the DD-HMC algorithm does not have a signifinlnence on the
autocorrelation timegJ4].
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Figure 1: History of the topological charge in a simulation of the p&té(3) gauge theory on a 64328
lattice with spacing = 0.07 fm. The plain HMC algorithm was used in this test run, withegectory length
of 2 units of molecular-dynamics time and an acceptanceofe28%.

The onset of the rapid growth of the autocorrelation time of the topologicbeh and thus
its value at a given lattice spacing, however depends on the chosen latiweand the simulation
algorithm. Increasing the length of the molecular-dynamics trajectories in th@ &llybrithm can
be beneficial[[K], for example, while the addition of six-link terms to the Wilstapette action
may have an adverse effef} [4, 5].

When the sea quarks are included in the simulations, the situation becomigiecaily more
complicated, because the autocorrelations may now also depend on ther mdimpbark flavours,
the quark masses and chosen the fermion acfiof][4—6]. These depisdand the one on the
lattice spacing remain to be studied in detail, but the experience made so faln (&kBometimes
only based on a visual inspection of measurement histories) shows tlzatttworrelation time of
the topological charge is again very rapidly growing when the lattice spésimgluced from 4
fm to 0.05 fm or even smaller values.

If the leading exponential autocorrelation time is assumed to grow propdijidaa >, the
total computational effort required for HMC simulations of QCD is expectesttie likea 1° at
fixed physics, i.e. the cost of the simulations increases by about threesafimagnitude when
the lattice spacing is divided by 2. This estimate may be a bit pessimistic, but it isctpatethat
the simulations required for safe extrapolations to the continuum limit are exyretmalenging.
Algorithmic improvements or viable ways of bypassing the slowing down of thelatioos are
certainly highly desirable at this point.

2.2 Autocorrelation effects in short runs

A question often asked in this context is whether the simulations really needverypenuch
longer than the leading exponential autocorrelation time. In particular, ifubatdies of interest
are only weakly coupled to the slow modes of the algorithm, the results obtairstwbiter runs
may conceivably be correct within statistical errors.

In general, the expectation values calculated in such short runs mugpéeted to be biased
to some extent. Considering again the measurement history plotted[ih figekaimple, it is clear
that the topological charge is incorrectly sampled in this case if runs nptwech longer than 5000
molecular-dynamics time units are performed. The expectation values of neestables are then
affected by terms inversely proportional to the space-time vol{ifrfe][9, 19ki€al quantities like
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Figure 2: Example of a normalized autocorrelation functipft) that is dominated by two modes with
exponential autocorrelation timeg > 1.

the masses of the andn’ mesons, but also hadronic matrix elements of pseudo-scalar densities
are likely to be strongly sensitive to these effects.

When arguing for short runs, one would need to provide a practicakpiure that allows the
effects of the slow modes on the calculated expectation values to be estimatethethey are
in fact negligible in the cases of interest is otherwise difficult to tell and otedtisvith results that
may or may not be correct.

2.3 Statistical error estimation in presence of slow modes

Large exponential autocorrelation times can also lead to an underestimatisagrhted au-
tocorrelation times and thus of the associated statistical errors. To illustrapothts consider a
normalized autocorrelation function

p(t) = |col’e V™ +|cyfe VTt 2.1)

which is dominated by two eigenmodes of the simulation transition probability, a slaie mith
exponential autocorrelation tinmg and a fast mode with autocorrelation time< 1o (see fig[R).

The coefficientdco|? and|cy|? in this formula measure how strongly these modes couple to the
observable considered. Note that the integrated autocorrelation time

Tint = To|Co[* + Ta|ca| 2+ ... (2.2)

is equal to the area under the curve shown in the figure. Whethean be easily estimated now
depends on whether the area under the tail of the curve dominates orf fiotloés not, i.e. if
Tolco|? < T1]cy/?, the relevant exponential autocorrelation timerisand the statistical error is
correctly obtained from simulations a few hundred times longer thafRuns very much longer
thanty are however required in the other case to be able to control the situation.

Note that the contribution of the slow mode to the statistical error is not guadhhbebe
negligible even if the couplinggo|? is very small. These cases are actually particularly difficult to
treat correctly, because the autocorrelation function in the tail is very swiile the area under
the tail may not be so. Since the autocorrelation function itself can only belatdd up to some
statistical uncertainty, it may then be quite impossible to exclude this caset @tosprg is known
or can at least be bounded from abojje [4].
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Figure 3: Equation (3.1) generates a flow in the space of lattice gaalgsfiOn a finite lattice, the existence,
smoothness and uniqueness of the flow is rigorously guagdratieall flow times|]]7]. Moreover, at any given

timet, the mappind) — V4 is an invertible transformation of field space, because tive ¢an be integrated
both forward and backward in time.

3. Wilson flow

The high-frequency components of the gauge field are usually weakiylex to the slow
modes of the HMC algorithm and tend to be efficiently updated. What exaoctlyr@ans by the
smooth components of the field is not entirely clear, however, and eversdeatich of their
properties (apart from the topological charge) are slowly sampled bgigoeithm. As explained

in the following, the Wilson flow [[7[]8] is a renormalizable smoothing operationahaws these
questions to be addressed on theoretically solid ground.

3.1 Flow equation

For any given lattice gauge fieldl(x, 1), the first-order differential equation

Vt(KN) :_g(z){aXMSN(Vt)}Vt(X7“)7 Vt(x>u)|t:0:U(X7IJ)v (31)

defines a trajectory; (x, u) of fields parameterized by the “flow timé’(see fig[B; differentiation
with respect td is abbreviated by a dot). In this equatid,(V;) denotes the Wilson plaquette
action [11] of the fieldv; at gauge couplingo and dy ,Sw(M) its (Lie algebra valued) variation
with respect to the link variabM (x, 1). Note that the coupling cancels in the flow equation.
Along the Wilson flow, the plaquette action decreases monotoni&]lg 0, and the gauge
field tends to become smoother. The flow is in fact generated by infinitesitoat™$nk-smearing
steps [1R] and thus shares some properties with this popular smoothiredprec Eventually
the flow drives the field towards the stationary points of the action, butagnto what may be
assumed, the large-time regime is a highly non-perturbative one in QCDrtlaypar, it may not

be meaningful to study the large-time behaviour of the flow separately frerwathtinuum limit of
the theory.
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3.2 QED — a soluble case

In the continuum limit, the flow equatiof (B.1) assumes the form

whereA(x) is the fundamental gauge fiel (t,x) the time-dependent gauge field a@g, (t,X)
the associated field tensor. In QED the equation is a linear diffusion equetimse solution is
given by

2
e =

(47t)2

Bu(tX) = [ d'yK(x—Y)Au(y) + gauge terms  Ki(2) = (3.3)
The flow thus averages the gauge field over a spherical range with sneane radius equal t@8t.
Note that, as is already clear from efg. [3.2), the flow tirhas engineering dimensidiengttj2.

Since the field generated by the flow is linearly related to the fundamentak gaald, its
correlation functions

(B, (t,1) - By, (£, Xn)) = eB/d“yl---d“yn Ke(X1 — Y1) - .- Ke (% — Yn)
xGo(Y1,-- -, Yn) ... +0auUge terms (3.4)

are proportional to the (full, bare) photorpoint functionsGo(y1, - - ., Yn)p..u,- A power of the

bare electron charge appears in this equation, because the canonically normalized photon field
is epA, rather tharA,; (which is normalized so that the covariant derivatives do not involve the
charge). Note also that the heat kern€l&« — yk) play the réle of smooth test functions in this
formula. In particular, the renormalization of the correlation function is aghieimply by renor-
malizing the bare charge and the photepoint function according to

eo=2,"%c,  Go=2Y’CGr. (3.5)

The fact that botheg and Gg renormalize with the same renormalization constants a conse-
guence of the gauge Ward identity in this theory (a gauge-invariant régatian is assumed here).
Since€)Gp = €}CR, this shows that the fielB(t,x) is, at all positive flow times$ and up to its
gauge degrees of freedomreamormalized smooth gauge field

Provided the bare charge is expressed through the renormalized @werithlation functions
of the field tensoG,, thus do not require any renormalization and converge to well-definedtemoo
functions of the space-time coordinates when the regularization of theyttseemmoved. More-
over, since QED is asymptotically free at low energies, the behaviour afatielation functions
at large flow times is described by leading-order perturbation theoryo& shlculation then leads
to the formula

1 {2(Gu Gy} = o, (3.6)

which shows that the field obtained by the Wilson flow contains some interedtisical infor-
mation.
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Figure 4: Plot of t>(E) in the pure SU(3) gauge theory as a function of the flow tingéven in units of
the Sommer scalg [[L3, [[4]. The thick solid line was obtained through numersimulation of a 96« 48°
lattice with spacinga = 0.05 fm. One-loop perturbation theory [eq. (3.8)] and the knawalue of theA-
parameter@S] yield the dashed curve with an error margiey(grea) deriving from the error apA.

3.3 Properties of the Wilson flow in QCD

In QCD the flow equation is non-linear and the renormalization of the theory ¢hmore
complicated than in QED. Whether the Wilson flow generates a renormalizge gald is how-
ever a question that can be studied in perturbation theory. In particidarxfrectation value of the
gauge-invariant density

E= _%tr{Gquuv} (3.7)

can be easily worked out to next-to-leading order in the gauge couplinteri3ional regularization
may be used in this calculation and it then turns out tEatdoes not require renormalization to
this order, i.e. the divergent terms are all canceled by the renormalizdttbe coupling. In the
MS scheme, the one-loop formula obtained in this wajjjis [8]

€)= opa@{1tka@t. ), a=(@) " 38)

ki = 1.0978+0.0075x Ny, (3.9)

whereN; denotes the number of massless sea quarks and the running caufuing evaluated at

a momentum scalg equal to the inverse of the leading-order smoothing range of the flow.
Beyond perturbation theory, the expectation valud&atan be computed straightforwardly

using the lattice formulation of the theory and numerical simulations. An accuuaterical inte-

gration of the flow equatiorf (3.1) is required in these calculations, but theeter time needed for

the integration is negligible in practice if a suitable higher-order integratoreid [§. The result

of a computation along these lines is plotted in flg. 4 in a range of the flow timespameling to

smoothing ranges from about2Xo 0.5 fm (the statistical errors are not visible on the scale of the
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Figure 5: Scaling behaviour of the reference tiagen the pure SU(3) gauge theory. The data (full points)
were obtained on lattices of size 424°, 64 x 328 and 96x 48° with spacings approximately equal tal0
0.07 and 005 fm, respectively. The continuum limit (open point) isaked through a linear fit ia? of the
three data points (solid line).

plot). Since QCD is asymptotically free, the perturbation expansioh (3.8)apmljes at small flow
times, but as can be seen from the curves shown ififig. 4, the transitiorttieosmall-time to the
non-perturbative regime is very smooth. Note #fdE) increases roughly linearly within the
non-perturbative regime, at least so in the range shown in the plot, @ibehahich is completely
different from the one in QED.

If (E) does not require renormalization, one expé&tE) to be a universal function fr3 up
to lattice effects that vanish proportionally to a positive power of the latticeisgaThe scaling
can be checked by introducing a reference tignthrough the implicit equation

t*(E)|,_,, =03 (3.10)

(see fig[h). Simulations at three values of the lattice spacings then shothéhdimensionless
ratio /8to/ro does in fact smoothly converge to the continuum limit, the lattice-spacing effects
being less than a percent in the range covered by the simulatior{g (figtt& doubt thus remains
that the Wilson flow maps the gauge field to a renormalized smooth field as in QED.

4. Topological sectors

The question of how exactly the topological sectors emerge in lattice QCDawarba an-
swered by performing the field transformatidn— V =4, in the functional integralp being the
reference flow time introduced in the previous section. The smoothing rarag®ut 05 fm in
this case, i.e. on average the fluctuations of the gauge field with wavelanqmtbshe confinement
radius are smoothed out. Somewhat surprisingly, the Jacobian of thintraason can be analyti-
cally expressed through the Wilson acti¢h [7]. The expectation valueyablaservableZ (U ) then
assumes the form

(0)= 5 [DVIoW)e ™), (4.1)
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Figure 6: Probability for the value of, [eq. (4.3)] on a given plaqueteto be above a specified thresheld
The three curves were obtained in the pure SU(3) gauge thatdryVilson plaquette action, using the same
representative ensembles of gauge-field configurationstag iscaling test reported in fig. 5.

where the action is given by

1
690 / ot Su(V). (4.2)

SV)=SU) +
In this formula, the field&) andV; are considered to be functions\landS(U ) denotes the action
of the theory (including the quark determinants if any) before the tramsiton.
Both terms in the actior] (4.2) tend to suppress large values of the plaquedteaiiie

Sp=Ret{1-V(p)} (4.3)

(whereV(p) is the product of the link variablés(x, 1) around the plaquettp) and thus force the
plaquette loops to be close to unity. Sirggas a field of dimension 4, representing the square of
the gauge-field tensor in the plaquette plane, its expectation value is in faatted to scale like
a* in the continuum limit. Numerical studies confirm this behaviour and show ttge laalues of

sp are indeed very strongly suppressed (seq[fig. 6).

Many years ago, a theorem was establistief[[16, 17] which states thsgatbe of all lattice
gauge fields satisfying a certain smoothness condition decomposes intajiopbétharge sectors
very much like the space of continuous fields in the classical continuumythkoparticular, the
theorem applies to the subspace of SU(3) gauge fielbich satisfy

Sp < 0.067 for all plaquettes. (4.4)

According to the empirical results reported in fi. 6, and since the numhsaqiiettes in a fixed
physical volume grows proportionally 804, the fields that dmot fulfill this condition occur with

a probability of order®. In the functional integral[(4.1), the weight of these configurationd (an
thus of the region of field space, where the assignment of the topolotjaajeis ambiguous) is
therefore rapidly decreasing when the lattice spacing is taken to zeratite lgauge theory, the
emergence of the topological sectors is thus seen to be a dynamical pmEmymich sets in
close to the continuum limit.
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t/to  TinQ  Tin(Q%  Tint[E] t/to  TinQ  Tin(Q%  Tint[E]
018 655  30(2) 2502 0.18 61490) 28434) 55(4)
035 675 32(2) 3502 0.36 61590) 28634 69(5)
070 686) 332) 44(3) 0.72 61590) 286(34) 86(6)

Table 1: Integrated autocorrelation times in the pure SU(3) gaugerthwith Wilson action, measured on a
48 x 243 |attice with spacing = 0.1 fm (left table) and on a 64 322 lattice with spacingi= 0.07 fm (right
table). In both cases, the HMC algorithm with a trajectoryglf of 2 and an acceptance rate of 83% was
used. All autocorrelation times and the trajectory lengéhgiven in units of molecular-dynamics time.

5. Slow modes of the HMC algorithm

The field transformation considered in the previous section maps the molegulamics tra-
jectories generated by the HMC algorithm to trajectories of the transformdd/fie V. At lattice
spacings where the regions of field space “between the topologicatseste strongly suppressed,
it is unlikely that such a trajectory leads from one sector to another, bedhe fields along the
trajectories are, to a good approximation, distributed according to their tiaigte functional in-
tegral. The emergence of the sectors and the freezing of the topologérgkedn HMC simulations
are thus directly related to each other.

5.1 Do the smoothed fields move slowly?

The algorithm may however slow down for other reasons as well andigeoeguarantee that
the gauge field is efficiently updated in a fixed sector. In particular, the ténfi@dds obtained by
the Wilson flow at flow time > 0 may conceivably be slowly moved through configuration space,
in which case the autocorrelation times of local observables construotadtiese fields (such as
E) are expected to be large.

The measured autocorrelation timeddfsted in table 1 are actually monotonically increasing
with the flow timet and reach values up to 10 times the autocorrelation time of the usual plaquette
observable at = 0. On the other hand, when the lattice spacing is reduced, they do natrappe
grow as rapidly as the autocorrelation times of the topological ch@r{ja these studiest and
the charge density were both defined using the same symmetric plaquetteqbwepseon for the
gauge-field tensor at the specified flow time). The relatively slow updafitigeosmoothed field
and the charge freezing are thus two different effects, where o abmiously driving the other.

5.2 Open boundary conditions

One may be inclined to conclude at this point that the emergence of the to@dlsgators at
small lattice spacings is the principal and perhaps only cause for thenpeesivery rapidly grow-
ing autocorrelation times in HMC simulations. However, when choosing opéseiti®f periodic
boundary conditions in the physical time direction, the topological sectaappisr and the space
of smooth fields becomes connected. One thus expects to observe onlyatehdeicreasing au-
tocorrelation times in this case if the slowdown of the algorithm is indeed mainlyedawsthe
separation of the sectors.

10
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Tint[Q] Tint [QZ] Tint[E] Tint[Q] Tint [QZ] Tint[E]
periodic  686) 33(2)  44(3) periodic 615%90) 286(34) 86(6)
open 616) 27(2)  38(3) open 38456) 15520) 77(6)

Table 2: Comparison of autocorrelation times measured on latti¢dsperiodic and open boundary condi-
tions in the physical time direction. The lattices are thmaas in table 1 (lefta= 0.1 fm, right: a = 0.07
fm), the HMC parameters are also the same and the flowttimequal to 07 x tg in all cases.

A lattice with time extenfT and open boundary conditions in time does not wrap around in
this direction, i.e. there are no terms in the action which couple the field variatiesexy = 0 to
those at the largest timg = T — a. In a simulation program for periodic lattices, these boundary
conditions can often be implemented simply by setting the time-like link variables atrtjesta
time to zero. Note that open boundary conditions preserve the gauge symimeire continuum
theory, they amount to imposing Neuman boundary conditions,

Fok(X) |0 = Fok(X)ly, 7 =0,  k=1,2,3, (5.1)

on the gauge field and homogeneous Dirichlet (Schrédinger functiomatdary conditions on the
quark fields,F,, being the field tensor of the fundamental gauge field. The field spacenesco
topologically trivial when these boundary conditions are chosen. lticpéar, instantons can be
smoothly moved in and out of the volume through the boundarigs-at0, T.

The figures listed in tablg 2 show that the situation is in fact somewhat impradved passing
from periodic to open boundary conditions (in both casgslenotes the sum of the topological
charge density over all lattice points). As a function of the lattice spacingutoeorrelation time
of Q is however rapidly growing independently of the chosen boundaryitondOn the periodic
lattices, the quantization of the topological charge thus appears to be abf eeveral causes of
the slowdown of the HMC algorithm.

5.3 Instantons and the chiral limit

One of the distinguishing features of non-abelian gauge theories is thereaof the instan-
ton solutions of the classical field equations. The fact that the action hegeantenifold of nearly
stationary points (the configurations built from many distant instantons @atitéhatantons) may
conceivably play an important dynamical réle in these theories, but sbdesved to be difficult
to actually show this. In the present context, the observation is perhapsnef relevance, because
the fields generated by the Wilson flow at large flow times tend to be close to tlomats points
of the action.

In QCD with light sea quarks, the fluctuations of the topological chargswppressed and the
smooth fields obtained by the Wilson flow may therefore be characteristicalgyetit from the
ones in the pure gauge theory. The slow modes of the HMC algorithm cosstdgineed not be the
same and the autocorrelation times of the usual quantities may turn out to higadieant depen-
dence on the quark masses. However, as already mentioned, systenaigis sfiautocorrelation
times await to be performed in QCD with dynamical quarks.

11
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6. Conclusions

Numerical lattice QCD rests on the assumption that simulations at sufficiently sittiak la
spacings can eventually be performed to be able to control the discretieatays. It is therefore
of central importance to overcome the poor scaling behaviour of thentlyrezailable simulation
algorithms. Finding better algorithms is difficult, however, and probablyireg@ more detailed
understanding of why the HMC algorithm slows down when the lattice spaciagés to zero.

The Wilson flow is a useful tool in this context, because it allows the propesfithe gauge
field at different length scales to be studied consistently with the renormalizattite theory. In
particular, the way in which the topological sectors emerge close to the contitimit is made
transparent through the flow. The emergence of these sectors is lyesterof the principal causes
of the slowdown of the HMC algorithm, but the fact that the situation improvég slightly on
lattices with open boundary conditions is a bit surprising and remains unesgglalt seems safe
to conclude, however, that there are important further sources ditieaety and that the problem
is likely to persist at fixed topological charge (the rapid slowdown of therahyn is in this case
expected to be revealed when considering the sum of the charge desgsityadf the lattice).

Choosing open boundary conditions in the physical time direction is nelesthan inter-
esting option, because the barriers between the sectors disappear iasthisvbile the transfer
matrix (and thus much of the physics) is the same as with periodic boundariticoad From
the point of view of the simulation algorithms, the absence of the barrieregepts an important
simplification. Tunneling transitions are then not required anymore and dei wgth the task of
finding an algorithm that moves the field (at, sayt = tp) efficiently through the space of smooth
configurations.
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