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A new gauge-covariant smearing algorithm for quark fields is described. The method applies a
low-rank operator to define the smooth fields to be used in constructing hadronic creation opera-
tors. Since the space of smooth fields is small, all elements of the reduced quark propagator can
either be computed exactly or estimated efficiently. The algorithm enables arbitrary sources to be
inserted in correlation functions, including multi-hadron operators. First results from the method
are presented.

The XXVIII International Symposium on Lattice Field Theory, Lattice2010
June 14-19, 2010
Villasimius, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:mjp@maths.tcd.ie


P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
1
6

Improving hadron creation operators on the lattice Mike Peardon

1. Introduction

Creating hadrons usually forms the heart of many calculations carried out by lattice practi-
tioners, whether their physics goals include spectroscopy [1], structure or matrix element deter-
minations. In a Monte Carlo computation on a Euclidean lattice, the signal relevant to hadronic
physics in a correlation function usually falls exponentially, and is rapidly dominated by statistical
fluctuation. Operators that predominantly create low-lying energy eigenstates are thus very useful
and improve the quality of measurements exponentially. The most useful tool in building a good
creation operator is smearing: rather than defining a creation operator as a function on the bare
fields in the lagrangian, they are first filtered to remove fluctuations at short distances that are less
important in the low-energy state.

The task of computing the correlation function involving quarks is made difficult by the grass-
mann nature of the fermion fields in the lattice path integral. Direct manipulation of these fields
is not computationally feasible. Instead, the fields are integrated analytically, leaving non-local
functions of the gauge fields alone.

A method that provided a smearing scheme combined with a new approach to the compu-
tational problem of measuring quark propagation would be very valuable to anyone interested in
making hadrons on the lattice and studying their properties. In this review, I describe a new frame-
work called “distillation” [2]. that attempts to address both issues. It defines a smearing that does
a good job of projecting onto the lowest energy eigenstates while facilitating easier evaluation of
arbitrarily complicated correlation functions. In its simplest implementation, the technique suffers
from poor volume scaling. Stochastic estimation is however seen to be very effective in reducing
the computing budget dramatically and enabling large volume calculations. The use of a small
vector space to capture the confinement-scale physics improves the convergence of these stochastic
estimators.

2. Quark smearing

Consider computing the energy of an eigenstate of the Hamiltonian of a confining field theory
such as QCD. In a Euclidean space-time metric, this requires a determination of the correlation
function between a creation and annihilation operator Φ† and Φ that are localised in time;

C(t ′, t) = 〈Φ(t ′)Φ†(t)〉. (2.1)

Inserting a complete set of eigenstates of the Hamiltonian with Ĥ|k〉= Ek|k〉 gives the well-known
expression for this correlation function as a sum of contributions from all modes;

C(t ′, t) =
∞

∑
k=0
|〈k|Φ†|0〉|2e−Ek(t ′−t). (2.2)

Here, 〈k|Φ†|0〉 is the matrix element detailing how effectively mode |k〉 is excited from the vacuum
by creation operator Φ†. To extract properties of low-lying states, it is crucial then to construct op-
erators that overlap predominantly with these lightest modes (i.e. for which this element is large for
low values of k and suppressed for higher values). This yields a correlator which reaches its asymp-
totic form at earlier time separations, which in turn helps more statistically accurate determinations
of energies.
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Our freedom in these calculations comes with the choice of Φ†. Once we have determined
how operators that transform irreducibly under the representations of the relevant symmetry groups
must behave, we can choose to write any function of the fields on a time-slice in order to create the
state of interest. Smearing is a very widely used method of helping in this procedure. Rather than
applying the creation operator directly to the variables in the path-integral, a smoothing process is
applied first. This process is chosen to filter out highly fluctuating modes, which are not relevant
for creating hadrons, while maintaining as many symmetry properties of the fields as possible. One
very widely used technique starts from the simplest representation of the gauge-covariant three-
dimensional laplacian.

−∇
2
xy(t) = 6δxy−

3

∑
j=1

(
Ũ j(x, t)δx+̂,y +Ũ†

j (x− ̂, t)δx−̂,y

)
(2.3)

and where it is usually helpful to use gauge fields Ũ that have themselves been smeared using a
covariant link-smearing scheme [3, 4]. The Gaussian smeared quark field ψ̃ is then defined as

ψ̃x(t) = Jxy(t)ψy(t) (2.4)

with the linear operator J given by

Jσ ,nσ
(t) =

(
1+

σ∇2(t)
nσ

)nσ

. (2.5)

Note that smearing need not be a linear operation (it is not for the gauge fields), but this is a very
useful property for quark fields as it keeps subsequent evaluation of correlation functions via Wick
contractions simple. We will keep to this restriction here. When nσ is large, Euler’s limit gives

lim
nσ→∞

Jσ ,nσ
(t) = exp

(
σ∇

2(t)
)
. (2.6)

and we see that rapidly fluctuating modes are exponentially suppressed by this operator. Figure 1
shows the spectrum of this operator on a typical small production lattice. One observation is clear;
most modes are extremely highly suppressed, and the operators is effectively very low rank, with
effective support on O(100) modes out of 163×3 = 12,288.

2.1 Distillation

Recognising that effective smearing operators are very low rank suggests making an explicit
replacement. Remember we are free to choose any smearing operator as long as it does not break
symmetries and remains well localised in time. Low-rank operators are often easier to manipulate
numerically and this will prove to be the case with quark propagation.

With access to all Nev = Nc×Ns eigenvectors, v and corresponding eigenvalues, λ ≥ 0 of the
gauge-covariant lattice laplacian on a particular time-slice, a spectral representation of the gaussian
smearing operator J can be written;

Jxy =
Nev

∑
a=1

e−σλ a
v(a)x v∗(a)y . (2.7)
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Figure 1: The spectrum of the Gaussian smearing operator on a 163 spatial volume. The main panel shows
the raw data barely visible in green, while the inset reproduces the first 200 modes on a logarithmic scale.
All but the first O(100) modes are very highly suppressed.

Note that the numerical problem of finding at least a subset of the lowest of these modes is reason-
ably tractable; the three-dimensional laplace operator is hermitian and non-negative, so well suited
to the Lanczos algorithm.

Now redefine this smearing by truncating at a low mode, ND � Nev. Applying this explicitly
constructed low-rank operator will be called “distillation” [2]. Figure 1 suggests the number of
modes needed to capture confinement physics on a 2fm lattice is less than 100. In principle, there
would be an ambiguity defining this operator if two or more modes straddling ND were degenerate,
since it would be unclear which to keep in the truncated sum. In practise, this ambiguity does
not arise suggesting these degenerate time-slices form a set with zero probability measure in the
partition function. As another simplification, the exponential weights in the truncation can be
dropped and empirically this is seen to have very little effect on hadronic correlation functions
once ND is fixed at a reasonably small value. The distillation operator is then simply written

�(t) =V (t)V †(t), (2.8)

with V an (Nc×Ns)⊗ND matrix. The distilled operator inherits all the symmetries of the lattice
laplacian. It is rotationally and translationally invariant (provided there are none of the degeneracy
problems described above). It is also covariant under gauge transformations. These symmetries
make it an appropriate choice for a quark smearing operator. Figure 2 shows the modulus of a
distilled source measured at points separated from the source both on- and off-axis on the lattice.
Continuum rotational invariance is seen. The different curves correspond to different choices of
the cut-off on modes in the sum.

The benefit of this modification to the smearing operator becomes apparent only when numer-
ical measurements of hadronic observables on the lattice are considered. To take an example, after
integrating out the quark fields, the correlation function of an isovector meson created by a general
operator on distilled fields ū�Γ†�d can be written

CM(t ′− t) = 〈 Tr
(
�Γ(t ′)�M−1(t ′, t)�Γ

†(t)�M−1(t, t ′)
)
〉. (2.9)

Here, the notation for operator Γ(t) is meant to describe an arbitrarily complicated function of the
gauge fields on time-slice t. Spin, colour and spatial indices are suppressed. At first sight, this
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Figure 2: The spatial distribution of a distilled source for three different sizes of distillation spaces (taken
from [2]). The scatter between points at large separation can be attributed to the finite extent of the lattice.

trace appears computationally intractible, since it involves summation over all spatial points on the
time-slices t and t ′ and so would require information on the quark propagator from all points on t
to all points on t ′. The usual means of evaluating an expression of this form is to restrict the choice
of operator at the source to excite quark fields at a single point only and compute just the restricted
set of columns of the quark propagator needed to measure this correlator.

On closer inspection though, the distilled expression is a trace over a much smaller space (of
dimension ND ×Nγ and the correlation function becomes

CM(t ′− t) = 〈 Tr
(
Φ(t ′)τ(t ′, t)Φ†(t)τ(t, t ′)

)
〉, (2.10)

with
Φ(t) =V †(t)Γ(t)V (t), (2.11)

and
τ(t, t ′) =V †(t)M−1(t, t ′)V (t ′). (2.12)

Φ and τ are relatively small matrices here. Two observations are useful; first there has been no
need to restrict the source to a particular point and translational invariance is maintained, enabling
operators of definite momentum to be used at both source and sink. Second, the observation that the
creation operator is encapsulated in Φ alone means correlations between arbitrary sources can be
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computed with no need to recompute quark propagators (encoded solely in τ). This is very useful
for variational calculations for example, where a large basis of different source/sink operators is
used and where correlation functions involving all possible combinations of sources and sinks must
be computed.

More complicated diagrams are made tractable too. The isoscalar mesons can be investigated
by evaluating disconnected terms that arise in the Wick contraction and these are facilitated by
the method. If hadron scattering and decays are to be studied, diagrams that involve creation of
multiple mesons (each with well-defined momentum) are needed. Since quark propagation from
all points on the time-slice is computed, these measurements are made possible too. Examples of
practical calculations involving just such diagrams will be presented later. Baryons can naturally
be computed following a similar recipe.

3. First numerical results

Distillation has been used in a number of large-scale calculations carried out by the Hadron
Spectrum Collaboration. The spectrum of isovector mesons was computed [5, 6] and the excita-
tions of the nucleon, ∆ and Ω baryons were investigated in Ref. [7]. The spectrum of isovector
mesons with mπ = 500 MeV is reproduced in Fig 3. In this determination, large variational bases
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Figure 3: The spectrum of light isovector mesons with mπ ≈ 700 MeV determined using distilled quark
fields. Spin identification was carried out using derivative based operator construction.

were used to investigate many spin channels including the spin-exotic hybrid mesons. The spec-
trum of excited nucleons is presented in Figure 4. This investigation also made use of a carefully
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Figure 4: The spectrum of nucleons determined using distillation [7].

constructed variational basis to determine the excitation spectrum. The benefit in precision arising
from distillation is clear from Fig 5, where data from a point-propagator calculation is compared.
Subsequently investigations of I = 2 scattering [8] and the isoscalar meson spectrum [9] have been
carried out Distillation gives excellent resolution of disconnected contributions to the correlation
function as can be seen in Figure 6, which shows data from about 500 gauge field configurations.
These computations were however very expensive, requiring millions of solutions to the linear sys-
tem for quark propagation to be evaluated. This was only made feasible by use of GPGPUs and the
QUDA library [10]. The end result of this determination is shown in Figure 7. An unprecedented
view of the spectrum of isoscalar mesons was obtained, giving detailed data on states up to spin
4, and including isoscalar spin-exotic hybrids. The mass of the η ′ resonance is resolved in this
calculation at about the percent-level statistical accuracy. The ρ −ω mass splitting is resolved to
MeV-level precision.
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Figure 5: Comparison of statistical precision of spin-exotic meson energies, determined using point-to-all
methods and distillation. Point-to-all data are taken from Refs [11, 12, 13, 14, 15, 16]

4. The scaling problem and stochastic estimation

There is a substantial drawback with direct numerical implementation of the method. The
number of modes ND needed to keep a constant resolution at the hadronic scale grows with the
spatial volume. A simple means of understanding this is to imagine the free theory, where the
eigenvectors of the laplacian are the Fourier modes. If structure up to some fixed momentum scale
p∗ is required then as L, the extent of the lattice grows the number of modes below p∗ grows in
inverse proportion to V = L3 as the density of states increases.

Note that this issue is entirely independent of the lattice spacing a and is governed by low-
energy dynamics. As the continuum limit is approached, it is to be expected that the number of
modes needed will not vary significantly although this has yet to be tested numerically. It is only
the large-V limit that presents a problem for the computer budget. Nevertheless this is a significant
problem that makes large simulations extremely expensive. It implies that the computing cost for
evaluating the quark propagator from all ND sources must grow at least like V 2. To make the
issue worse, consider how expensive contracting quark propagators to form meson and baryon
correlation functions is. As we have seen, evaluating a meson correlator is equivalent to computing
the trace of a product of ND ×ND matrices and the cost of this grows like N3

D ≡V 3. For baryons,
the problem is worse still, with a O(V 4) dependency.

The computing cost can be dramatically reduced and brought under control by using a stochas-
tic estimate of the correlation function. The important advantage that distillation has enabled is that
these estimate can be constructed within the space of distilled fields, rather than the much larger
space of unsmeared lattice fields. This leads to substantial benefits in variance reduction. These
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Figure 6: The diagrams contributing to the correlation function of the light, psuedoscalar isoscalar mesons,
η and η ′. C and D indicate connected and disconnected contributions and the hidden flavour in the source
and sink is indicated by the superscripts l and s respectively.

computations start from the usual place; a stochastic representation of the identity matrix is written
as the outer product of two vectors filled with independent random numbers: I = E[ηη†]. In this
case, these vectors lie in the space of distilled fields on a time-slice, so they are relatively small.
Now the distillation operator can be written

�= E[V ηη
†V †]. (4.1)

The ideas of “dilution” [17, 18] are very useful again to control the variance of these estimators.
In tests performed to date, dilution is carried out by collecting the vectors into sub-sets and adding
noise into these smaller spaces in turn. Now the distillation operator is written

�= ∑
q

E[V P(q)
ηη

†P(q)V †]. (4.2)

with P(q) a projection operator into partition q of the distillation space so that P(q)2 = P(q) and
∑q P(q) = I. For details and a practical implementation, see Ref [19]. Using the distillation space
as the place to inject noise and cut costs has a substantial benefit as is seen in Fig 8.

At this meeting, first results that exploit this stochastic estimation approach to evaluating dis-
tilled correlation functions were presented [20, 21, 22]. More information can be seen in other
conference presentations from 2010: [23, 24, 25, 26]. Recently, a more comprehensive investiga-
tion was completed and is presented in [19].
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Figure 7: The spectrum of isoscalar mesons when mπ = 396 MeV. Flavour mixing angles are indicated
via the relative amounts of black and green on the bars. The corresponding isovector meson spectrum is
superimposed in grey and the Yang-Mills glueball states are indicated in pink.

5. Summary

A simple observation about the quark-field smearing process suggested a new approach to
help tackle previously difficult problems in lattice hadronic physics. In smearing, a very substantial
fraction of the modes of the field are almost entirely eliminated. Since smearing operators can be
defined arbitrarily (within a set of constraints), a helpful choice is to use an explicitly low-rank
operator with support in a small vector space of smooth fields on each time-slice of the lattice. This
is distillation.

On small lattices (below about 2fm box-length), the number of modes needed to create mesons
and hadrons is sufficiently small that all elements of the restricted propagator can be computed at
a manageable cost (in comparison to generating dynamical gauge field configurations). Bigger
volumes need too many inversions for this to be tractable but first data from stochastic estimation
experiments strongly suggest this problem can be ameliorated.

With all elements of the restricted propagator (or at least a good stochastic estimator of them)
to hand, a wide range of operators become available. A large basis of creation operators can be
inserted and all elements of the correlation matrix measured. This enables a variational calculation
to be performed, giving information on excited states and states with higher spin. Hybrid mesons
are measured with unprecedented accuracy. The correlation functions for isoscalar states, which
have contributions from disconnected diagrams can be computed to good precision. Multi-hadron
states can be computed, and this conference saw a number of presentations demonstrating this
application.

While it has already proven useful in production measurements, more work to fine-tune the
method might be beneficial. Using eigenmodes of the three-dimensional lattice laplace operator on
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Figure 8: A comparison between variance in estimators for the correlation function for a nucleon computed
using noise inserted into the space of unsmeared quark fields (red data) and distilled quark fields (blue). A
clear benefit to using stochastic estimators in the distillation space is seen. [19].
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Figure 9: Correlation functions of pseudoscalar and scalar isoscalar mesons constructed from distilled
sources and estimated stochastically for mπ = 240 MeV [19].

each time-slice has been shown to be a very good starting point in defining smooth, gauge covariant
modes but it is by no means unique and there is no deep reason to expect it is optimal. Other choices
should be considered.

The big problem with direct computations is the scaling with the lattice volume. While some
improvements in signal quality come from working in a bigger volume, the naive expectation is that
the number of modes needed grows like the three-dimensional volume of a time-slice. The basis
needs to resolve features at some fixed confinement scale, and the number of these features that can
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fit into a box grows in direct proportion. Numerical experiments bear out this simple reasoning.
The use of stochastic estimators, with the noise put directly into the distillation space appears to
solve this problem. A number of results from first tests were presented at this meeting and illustrate
this conclusion.

The framework promises to be very useful when states that resemble multiple hadrons are to
be constructed. These operators appear to be crucial in determinations of scattering properties and
resonances on the lattice. The implementation and exploitation of distillation in these calculations
is under investigation.
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