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1. Introduction and conclusions

In recent years a new approach to the simulation of statistical systems on the lattice has been
developed which goes under several names: world line or loop gas formalism, all-order strong
coupling (or hopping parameter) simulations or ‘worm’ algorithm methods. The key idea is to
first reformulate the system as the (complete) sum of its strong coupling graphs. This refers to a
very simple form of the strong coupling expansion that converges as longas the volume remains
finite. At large correlation length the graphs that have to be included to obtainprecise results are
however of forbiddingly high order for a systematic expansion. Using algorithms similar to those
proposed in [1] and [2] it has become possible on the other hand to estimate the expansion of many
observables by a Monte Carlo procedure that samples a representativesubset of contributions. An
important bonus is that this approach has been demonstrated to at least in some cases be free
of critical slowing down or free of sign problems where this is not so with known methods in
the conventional formulation. The problem of efficiently producing independent long distance
correlatedfield configurations is translated into the need of efficiently passing betweenthe relevant
large strong coupling graphs. This problem seems to be sufficiently different tomake progress in
cases where for instance cluster algorithms in the conventional setup do not work.

The topic has been reviewed before [3] at Lattice 2008. It also seems to be closely watched by
the finite-µ QCD community and typically fills a subsection in their reviews, see [4] and Sourendu
Gupta’s contribution to this conference. These may be consulted in particular in connection with
progress on the sign problem. In the present contribution we mainly focus on the important success-
ful extension to non Abelian spin models of the O(N) and CP(N−1) type. While the method here
is not confined to two dimensions, most tests are conducted there because of asymptotic freedom
and the possibility to probe deeply into the continuum limit. We also cover progress on fermions
which unfortunately at presentis confined to two dimensions1 and allows for instance simulations
of the Gross Neveu model. Finally we mention here that first steps have beenmade toward the
treatment of gauge theories, see [6].

2. The idea: Ising model as an example

A good starting point to explain the strategy is the two point correlation in the Ising model

〈σ(u)σ(v)〉 =
2−V ∑{σ(x)=±1}eβ ∑l=〈xy〉 σ(x)σ(y)σ(u)σ(v)

2−V ∑{σ(x)=±1}eβ ∑l=〈xy〉 σ(x)σ(y)
=

Z2(u,v)
Z0

. (2.1)

Hereu,v are sites on a hypercubic periodic lattice ofV sites in arbitrary dimension. In (2.1) we
emphasize the view of a correlation as a ratio of two partition functions with and without field
insertions.

In anyfinite volumethe expansions2 of Z0,Z2 in powers ofβ are convergent for all values of
β . This includes the vicinity of the critical point and all situations where Monte Carlo simulations
are performed. It will turn out that in general very high orders inβ are required to realize this

1See however [5] for ideas for an approximate method beyondD = 2.
2An expansion in powers of tanhβ instead ofβ would appear more efficient for the Ising model, but would be less

easy to generalize below.
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Figure 1: A contribution inG0 (left graph) andG2 (right graph). The boundaries are identified due to torus
boundary conditions

convergence and achieve precision. This is not possible in a systematic truncated expansion as there
are unmanageably many terms or graphs. As in other physical cases it comes to rescue that not all
terms are needed. A Monte Carlo procedure will instead sample a sufficiently‘important’ subset of
high order terms. Usual systematic strong coupling expansions are restricted to small correlation
lengths but, on the other hand, allow to take the thermodynamic limit of quantities likeZ2/Z0 term
by term in the expansion. It is through this step that a finite radius of convergence emerges which
in many cases (certainly in the Ising model) corresponds to a physical phase transition.

The expansion is set up by using

eβσ(x)σ(y) =
∞

∑
k=0

β k

k!
σ(x)kσ(y)k (2.2)

for each neighbor pair on each linkl = 〈xy〉 introducing independent integersk(l) = 0, . . . ,∞ on
all links. For each configurationk ≡ {k(l)} the spins may now be summed over and the partition
functions are given as

Z0 = ∑
g∈G0

β ∑l k(l)W[k], Z2(u,v) = ∑
g∈G2(u,v)

β ∑l k(l)W[k]. (2.3)

In this formula thek-configurations are viewed as graphs of the type shown in Fig. 1. Thereare
k(l) lines on each link. The left graph is in the setG0 where the spin summation has enforced
the constraint that each site must be surrounded by an even number of lines and all different such
graphs make upG0. The setG2(u,v) is visualized in the right graph in Fig. 1 with the red crosses
atu,v surrounded by an odd number of lines due to the extra spin insertions. Thefactor

W[k] = ∏
l

1
k(l)!

(2.4)

completes the weight implied by (2.2).
By differentiating lnZ0 we derive the identity for a link〈xy〉 = l ′

β 〈σ(x)σ(y)〉 =
1
Z0

∑
g∈G0

β ∑l k(l)W[k]k(l ′) = 〈〈k(l ′)〉〉0. (2.5)
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As indicated before a typical graph is thus O(V) in β close to the critical point where the left hand
side is O(1).

A direct simulation of the ensembleZ0 in the form (2.3) was tried a long time ago in [7]. The
authors designed a Monte Carlo algorithm that samples graphs inG0 (mainly) by local deforma-
tions over plaquettes. They observed critical slowing down comparable to other standard methods.
Probably mainly for this reason the approach does not seem to have beenpursued much further
at the time. Also the accessibility of physically interesting observables was notobvious in this
formulation. The two point function for example could in principle be estimated asa product over
strings ofk(l) but this would probably be inefficient at long distance due to a large variance.

A breakthrough was achieved much later in [1] and [2]. The essential idea was a joint simula-
tion of Z0 andZ2 in an ensemble with the partition function

Z = ∑
g∈G2

β ∑l k(l)W[k] = ∑
u,v

Z2(u,v) (2.6)

where the sum overG2 without arguments is over graphs with all possible insertion points

G2 = ∪u,vG2(u,v). (2.7)

Note that the graphsG0 contributing toZ0 are also included as diagonal contributions3 with u = v.
Expectation values are now defined as

〈〈A〉〉 =
1
Z

∑
g∈G2

β ∑l k(l)W[k]A[g]. (2.8)

The identity (2.5) now reads

β 〈σ(x)σ(y)〉 =
〈〈k(l)δu,v〉〉

〈〈δu,v〉〉
= 〈〈k(l)〉〉0 (2.9)

and summing over all linksl = 〈xy〉 we measure the internal energy of the original Ising model. In
addition it is easy to establish the connection for general correlations

〈σ(x)σ(0)〉 =
〈〈δx,u−v〉〉

〈〈δu,v〉〉
(2.10)

which in particular implies〈〈δu,v〉〉 = χ−1 > V−1 with the magnetic susceptibilityχ. The fraction
of sampled graphs that belongs toG0 gets smaller toward the critical point but remains larger than
one out ofV.

In a very simple but useful generalization we include a nonnegative weight ρ−1(u− v), into
our strong coupling ensemble

Z = ∑
g∈G2

β ∑l k(l)W[k]ρ−1(u−v) ⇒ 〈σ(x)σ(0)〉 = ρ(x)
〈〈δx,u−v〉〉

〈〈δu,v〉〉
. (2.11)

We adopt the normalizationρ(0) = 1 andρ must respect the lattice periodicity. The advantages of
this modification will be discussed in sect. 3.3.

3Each graphg∈ G0 appearV times in the sum with all possibleu = v.
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The essential move in a Monte Carlo simulation of theG2 ensemble with partition functionZ
is now the following local update step. One may moveu to one of its nearest neighbors by shifting
it over one of the 2D links attached to it. At the same time thek(l) of that link is changed by
±1 (adding or removing a line ofg). Of course similar moves may be made atv, alternatingly or
picking randomly one of the two insertion points. These allowed moves staying within G2 may be
used now as proposals for Metropolis acceptance steps. We do not describe any realization here in
all details, but refer to the literature. Concrete procedures for theβ expansion discussed here may
be found in [2] or [8]. Algorithms for the tanhβ expansion of the Ising model withk(l) ∈ {0,1}
are discussed in detail in [9], [10].

In these papers it is numerically demonstrated that strong coupling simulations of the Ising
model have very much reduced and in many cases completely eliminated critical slowing. We
conclude that it is advantageous to enlarge the graph space fromG0 to G2 by allowing defects. This
is true even if we measure inG0 only as in (2.9), but we have seen that the ‘intermediate’ graphs
contain even more interesting information. In these proceedings we consider the Ising discussion
only as a preparation for more elaborate models and hence do not review performance results here
in more detail.

3. Nonlinear sigma models

3.1 O(N)

In [11] a generalization of the above strong coupling graph representation to the O(N) invariant
nonlinear sigma model has been given. In this caseZ2 generalizes to

Z2(u,v) =

[
∏

z

∫
dNsδ (s2−1)

]
eβ ∑l=〈xy〉 s(x)·s(y)s(u) ·s(v) (3.1)

wheres(x) is anN component unit vector integrated over the sphere. ForN = 1 the Ising model
is obviously recovered. To generate an expansion inβ we again expand the Boltzmann factor on
each link. To then integrate out the spins for each term in this expansion we need the integral
over the sphere with an arbitrary monomial in the spin as integrand. This information follows by
differentiation of the generating function with anN component sourcej

∫
dNsδ (s2−1)ej·s =

∞

∑
n=0

c[n;N]( j · j)n (3.2)

with coefficients

c[n;N] =
Γ(N/2)

22nn!Γ(N/2+n)
(3.3)

deriving from the expansion of modified Bessel functions. Working outthe combinatorics, i.e. the
multiplicities of each term, we arrive at4

Z = ∑
g∈G2

β ∑l k(l)W[k;N]
N|g|

S [g]
×ρ−1(u−v). (3.4)
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k(l)=2

(div k)(x)=4

u

v

Figure 2: Schematic view of a graphg∈ G2 for the O(N) model. The divergence divk means the number of
lines around a site.

Several elements in this formula require explanation:

• The graphsG2 now differ from those in Fig. 1 only in so far that the even number of lines
surrounding a site are connected pair-wise except two lines ending atu,v. This is visualized
for a simple case in Fig. 2.

• By the pairings (corresponding to contractions of theN spin components) a number of|g|
closed loops form in the graphg, each contributing a factorN.

• The weightW collectsk(l)! factors and thec[n;N] from the site integrations.

• The symmetry factorS [g] generically equals unity. Only if a graph has extra symmetries
under the exchange of lines then it equals the order of this symmetry group.This is analogous
to symmetry factors in Feynman diagrams. More details on this subtlety are foundin the
erratum of [11].

The relation between the spin correlation and the graph ensemble is changedonly by the spin
contraction

〈s(x) ·s(0)〉 = ρ(x)
〈〈δx,u−v〉〉

〈〈δu,v〉〉
. (3.5)

The simulation of (3.4) requires in addition to the update steps outlined before reroute moves where
the local line connectivity is changed. It suffices to go tou (or v) and to randomly divorce one of
the line-pairs passing through5. The single line previously ending atu is remarried to one of the
divorcees with the other one becoming the new single line. This is again employed as a Metropolis
proposal that is accepted with a well defined probability dictated by the weights in (3.4). By taking
into account the asymmetric a priori proposal probabilities, alsoS [g] is seen to be implemented
correctly.

To implement the simulation just sketched, the graph structure including its connectivity has to
be mapped on a discrete structure in the Computer. This is possible by a linked list. In the language

4The symbolsG2,W and laterS are re-used for the different classes of models that we discuss although their
precise form becomes context dependent in this way. Factors includedin W in the references are sometimes pulled out
and made explicit in this write-up.

5If there are no such lines (as in Fig. 2), no move is made.
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C the configuration can be coded into pointers where each line element residing on a link gets a
name and points to its successor and predecessor along its closed loop. Inaddition there must be
integer variables describing the geometrical embedding of the graph on the lattice.

The weightN|g| may be implemented either exactly or stochastically. In the original publi-
cation [11] the exact algorithm (R-algorithm) has been described. In this case theN-dependent
weight (3.4) is fed into the Metropolis decision. Then it must be known in the reroute step, if the
passing through line, that is picked for swapping the connectivity, belongs to the line connectingu
andv or if it is part of a separate closed loop. To make this nonlocal information available requires
to sometimes travel around one of the closed loops by following the corresponding pointers. As
typical loop circumferences grow in the continuum limit, an elementary reroute step costs more
than O(1) operations. The numerical observation in [11] can now be summarized as follows. There
is (practically at least) no slowing down in units of iterations corresponding toorder O(V) ele-
mentary steps. As they cost however slightly more than O(V) operations there is a small effective
critical exponent. It was estimated aroundz≈ 0.3. This refers to the O(3) model inD = 2 with
large volume and correlation lengthsξ = 7, . . . ,65 and to the criticalD = 3 model atL = 32,64.
The name R-algorithm derives from the fact that hereN may be taken also to non-integer values
by continuing the weights. For integerN one may formulate the I-algorithm where the weightN|g|

is incorporated stochastically. Then each closed loop as well as the line betweenu andv carries an
integer degree of freedomi = 1,2, . . . ,N that is independently summed over. In the reroute step,
only lines with the samei can join. Additional update steps are now needed to move thei-labels.
A minimal way to do this is to randomly assign a new label to the line betweenu andv after O(V)
elementary steps. In a short test Tomasz Korzec has verified that this form of the I-algorithm shows
very little critical slowing down in the O(3) model forD = 2 andξ in the range mentioned before.
A more detailed description of the R- versus I-algorithm together with numerical results is given in
the paper [12] about the loop formulation of the CP(N−1) model to which we come in sect. 3.3.

3.2 O(3) model with Nienhuis action

We now imagine to restrict the graph summation in (2.8) or (3.4) to the subclass ofgraphs
which obey the constraintk(l) 6 1 on all links, which can be easily implemented in the simula-
tions. In the Ising model this changes theβ expansion into the tanhβ expansion. Thus, if we
accompany the restriction by this substitution we obtain exactly the same correlation and hence
u−v distribution as before. In general the reduced set of graphs is equivalent to starting from

Z2(u,v) =

[
∏

z

∫
dNsδ (s2−1)

][
∏

l=〈xy〉

{
1+ β̃s(x) ·s(y)

}]
s(u) ·s(v) (3.6)

instead of (3.1). This is clearly a new lattice model – hence we renameβ → β̃ – and the question
arises if it belongs to the same universality class despite its strange appearance. Such an action has
been introduced before [13] and studied in detail by Nienhuis [14]. An exact solution was obtained
by summing the strong coupling expansion on honeycomb lattices where the loops now cannot
intersect. The critical region could be reached forN 6 2 with β̃ 6 1, i.e. a nonnegative weight
in (3.6) and universality was supported. In our simulations there is absolutely no sign problem
when takingβ̃ > 1 where in the original path integral there seems to be a drastic sign problem. We

7
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Figure 3: Continuum extrapolation of a step scaling function based on(3.6).

thus simulated the O(3) model withk(l) 6 1 and quickly found that no criticality was reached with
β̃ 6 1. To investigate universality we computed a step scaling function [15] for the finite volume
mass gap extracted from time slice correlations. In Fig. 3 we see that the data points accurately
extrapolate to the star which is the exact universal answer known [16] for this case. These runs
involve values ofβ̃ in the range 1.8. . .3.1. Our careful conclusion is that at least for this special
case a universal result is reproduced by (3.6) at a significant precision.

3.3 CP(N−1)

Another class of nonlinear sigma models that are of physical interest are the CP(N−1) sys-
tems. There the spins label one dimensional subspaces in complex space and may be parameterized
by φ(x) ∈ C

N, |φ(x)|= 1 whereφ differing by a phase have to be identified. There are two popular
lattice actions compatible with this structure. One is the explicit gauge field action

−S[φ ,U ] = β ∑
xµ

[U(x,µ)φ†(x)φ(x+ µ̂)+U−1(x,µ)φ†(x+ µ̂)φ(x)] (3.7)

where nearest neighbors are coupled with a U(1) gauge fieldU(x,µ). It is independently integrated
over without an action of its own. As it can absorb local phase changes toφ the geometric structure
of the model is respected. A second option is provided by the quartic action

−Sq[φ ] = 2βq∑
xµ

|φ†(x)φ(x+ µ̂)|2 (3.8)

which exhibits local U(1) invariance without extra fields. The standard expectation is that these
actions are in the same universality class and produce the same continuum quantum field theory.

A convenient way to probe the model is by correlations of the adjoint local density ja(x) =

φ†(x)λ aφ(x), whereλa are a basis of hermitian tracelessN×N matrices normalized by tr(λ aλ b) =

2δ ab, i.e. generalized Gell-Mann matrices. Again we focus on the two point function

〈 ja(u) ja(v)〉 =
Z2(u,v)

Z0
. (3.9)

8
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Figure 4: Autocorrelation times in the two dimensional CP(3) model inMonte Carlo time units comparable
to ‘sweeps’.

By steps that generalize those of the Ising and O(N) cases and which can be found in detail in [12]
we construct a strong coupling representation (first for (3.7))

Z = ∑
g∈G2

β 2∑l k(l)W[k;N]
N|g|

S [g]
×ρ−1(u−v). (3.10)

The complex field variables lead to a modified graph structureG2:

• Each line on a link carries an orientation (arrow) and they are paired at thesites in a way
respecting the sense of arrows.

• There are two lines of opposite orientation running betweenu andv.

• On each link there is the same number of arrows in either direction.

The last constraint is a direct consequence of integrating out the U(1) gauge field. In the exponent
k(l) is the number of linesper orientation. The weightW is again a local product of explicitly
known [12] terms andS [g] is the symmetry factor. The connection with the adjoint correlation
can in this case be written as

〈 ja(0) jb(x)〉 = ρ(x)
2δab

N(N+1)

〈〈δu−v,x〉〉

〈〈δu,v〉〉
. (3.11)

If we repeat the construction starting from the quartic action we arrive atexactly the same graph
structure but obtain a different expression forW and have to replaceβ 2 → βq.

It turns out [12] that this model may be simulated by a procedure very similar tothe one
described for the O(N) model. For the I-implementation treating the factorN|g| stochastically we
show measured integrated autocorrelation times in Fig. 4. We consider a series of simulations based
on (3.7) withD = 2,N = 4 and fixingL/ξ ≈ 10. The observableK is defined as the right hand side

9
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Figure 5: Effective mass as a function of time slice separationt for L = 780≈ 10ξ in the CP(3) model.

of (2.9) (summed overl ) which also here is equivalent to the internal energy. The susceptibilityχ
and the massmare extracted via the correlation (3.11).

By computing a step scaling function the universality between the two lattice realizations of
the CP(N−1) model with actions (3.7) and (3.8) has been confirmed at high precision (see Fig. 4
in [12]) for D = 2,N = 3.

In CP(N−1) models topology is of special interest. The status here is that the extensionof
(3.10) to include aθ term is given in [12]. A simulation of this modified system remains to be
tested. Amplitudes in this case are not strictly positive any more, but it is not known for which
values ofθ this leads to numerically problematic sign fluctuations.

It is now time to come back to the usage of the free weightρ in our simulations. We read (3.11)
as follows: If we are able to guess the behavior of the two point function and use this guess for
ρ(x), then, up to known factors, the histogram〈〈δu−v,x〉〉 yields the correction factor that turns our
guess into the exact answer. For a perfect guess, it would be constant, in other words all possible
separationsu− v would occur with equal frequency. Up to autocorrelation effects we would then
expect equal relative statistical errorsat all separations. One can thus trace the exponential decay
without degrading signal to noise ratio. That this really works in practice is shown in Fig. 5. Here
ρ was set to the scalar propagator with mass 10/L. Similar plots are available for Ising and O(N)
simulations.

10
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Figure 6: Loop or hopping parameter expansion graph configuration fora Majorana fermion inD = 2 (left
panel) andD = 3 (right panel).

4. Fermions

In [17] the problem of a 2D Majorana-Wilson fermion in an external scalarfield on a two
dimensional torus was formulated as a loop gas and simulated by cluster methods. Urs Wenger
first proposed [18] that in this formulation this system could alternatively besimulated with the
‘worm’ algorithm [2] which then triggered the independent study [19]. Inthis case the relevant
partition function with two insertions is

〈ξα(u)ξ β (v)〉 =

[
∏

z

∫
dξ1dξ2e−

2+m
2 ξ ξ

][
∏

l=〈xy〉

eξ (x)P(ŷ−x)ξ (y)

]
ξα(u)ξ β (v). (4.1)

We here integrate over two Grassmann variables per site,P(ŷ−x) is the Wilson projector12(1−
nµγµ) if the link is y = x+ n andξ stands forξ⊤C with charge conjugationC γµC−1 = −γ⊤µ .
An external field is present ifm= m(x) is not constant. Due to the projector nature ofP and the
Grassmann nilpotency, the expansions of the link factors have only two termseach (k(l) = 0,1)
as for the Nienhuis action. Moreover there can be at most two lines adjacent to a site and as a
consequence loops and the line betweenu andv cannot intersect. A typical configuration is shown
in the left panel of Fig. 6 for a massless free fermion. In this case the correlation is given by

〈ξα(x)ξ β (0)〉 = ρ(x)
〈〈δx,u−vΦ(k)Mαβ (k)〉〉

〈〈δu,vΦ(k)〉〉
(4.2)

whereΦ(k) is a well defined and readily computable sign andMαβ (k) is a set of 2×2 matrices
which only depends on the directions in whichu andv are approached by their connecting line.
Although the observable can change sign, this two dimensional fermion has no serious sign prob-
lem, as neither the denominator nor the numerator gets very small. This is because the bulk of
closed loops that close without winding around the torus are all positive. This is a specialty of two
dimensional fermions which here appears as the following feature. For each closed loop there is
the usual fermionic minus sign, but it is canceled by another sign. The latter arises from the trace
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of a string of Wilson projectors multiplied along the loops. This minus sign can be understood as
the sign that arises when a spinor is parallel transported around the loop and is rotated by 2π. For
subtleties related to (anti)periodic boundary conditions of the finite system thereader is referred to
[19] and to [20]. In this publication it is also shown howN species of this loop gas can be coupled
to represent and simulate the O(N) invariant Gross Neveu model in a remarkably efficient way.

The loop representation of the Majorana fermion was generalized fromD = 2 toD = 3 in [19].
Here we still have only two Dirac components and the efficient computability is unchanged. In the
right panel of Fig. 6 we see a configuration from a simulation of a free fermion atm= 0.65 on
a 122×24 lattice where we reproduced the propagator very precisely. Making however the mass
smaller and/or the system much larger we very abruptly encounter the full-blown sign problem.
The reason is that inD = 3 the positivity of loops only holds as long as they are planar. If non
planar loops become abundant, the spin factor assumes all values in Z(8) and does not cancel the
Fermi minus any longer. Instead of Z(8) there would formally be a U(1) in thecontinuum, which is
reduced to Z(8) on the lattice along with rotations being reduced to the hypercubic subgroup. This
fermionic sign problem is presently unsolved. We consider the simpleD = 3 Majorana fermion as
a good laboratory for further thinking.

5. Triviality of ϕ4 theory

In four dimensions the number one textbook example for a quantum field theory with a self-
interacting real scalar field is believed to be trivial, i.e. a free field, once thecontinuum limit is
taken. While this is rigorously known to be the case forD > 4 and false forD < 4 in the borderline
case ofD = 4 the belief in triviality rests on numerical demonstrations. As a byproduct ofthe
strong coupling reformulation discussed here, we have found a very much improved handle on
such numerical checks for the Ising limit ofϕ4 which is the most interesting parameter range
for triviality. One of the techniques to obtain rigorous bounds inD > 4 has been developed by
Aizenman [21]. He uses nothing but the all-order strong coupling form that we have developed in
sect. 2, called random current representation by him. Quantized currents k(l) flow through the
links and are conserved mod 2 at sites, with two sources atu andv. By borrowing his replica trick
and a graph theoretical proposition we could establish [8] the following identity for the Ising model
at arbitraryD and volumeLD

gR = −
χ4

χ2(mR)D = 2zD〈〈X 〉〉(g,g′)∈G2×G2
. (5.1)

In this formula for the usual renormalized couplinggR

• χ is the 2-point susceptibility,

• χ4 is the 4-point (connected, symmetric phase) susceptibility,

• mR is a renormalized mass, for example using the second moment definition,

• any fixed values ofz= mRL defines a renormalization scheme,

• the simulation samples two independent replica of graphsg,g′ with corresponding
k,k′,u,u′,v,v′,
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Figure 7: Cutoff dependence of the renormalized coupling forD = 4, z= 4. By starting integrations of the
Callan Symanzik equation at the leftmost data point the lines are produced.

• X ∈ {0,1} is an observable computed as follows.X = 1 holds iff all four defects are in
one clusterof an auxiliary bond percolation problem. The bond variables in this problem
are ‘off’ only on links wherek(l) = 0 = k′(l) holds and ‘on’ on all others. From cluster
simulations we know how to efficiently computeX .

Note that (5.1) impliesχ4 6 0, i.e. the Lebowitz inequality is manifest in this estimator. The
advantage of our (Aizenman’s) method lies in not having to perform a numerical cancellation to
computeχ4 which avoids a large significance loss. Triviality now amounts to the question whether
or notgR ց 0 asL/a→ ∞. Here for eachL/a, β is determined by tuningz to the chosen value.

In [8] a study was made for a relatively small volumez= 2. Although the results forD = 3,4,5
are consistent with the triviality expectations, inD = 4 there remained some tension in matching
with the perturbative coupling evolution close to the continuum limit. Probably this must be at-
tributed to the weakly damped fluctuations of the constant mode. We thereforemade another study
with z = 4 shown in Fig. 7. The data points withL/a = 8, . . . ,64 have errors of only about the
symbol size in spite of only modest CPU time invested on some PCs. The coupling ˜g may be
identified withgR here. We see a convincing ‘convergence’ of the perturbative evolution toward
the data points at smalla/L (left side in the plot). If we are willing to conclude that this agreement
persists for yet smallera/L then triviality is established forϕ4 (in the Ising limit).
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