PROCEEDINGS

OF SCIENCE

Strong coupling expansion Monte Carlo

Ulli Wolff*
Humboldt Universitat, Institut fur Physik, Newtonstrad$e 12489 Berlin, Germany

E-mail: pwol f f @hysi k. hu-berlin. de

We give an overview on recently accomplished successfutmdimations of ‘worm’ or loop
gas simulation methods to Nf and CPN — 1) sigma models and to simple fermion models.
Beside the advantage of (practically) eliminated critglalving down we also explain additional
opportunities to estimate some observables with extreimglyoved signal to noise levels.

The XXVIII International Symposium on Lattice Field Theory
June 14-19, 2010
Villasimius, Sardinia Italy

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre@dmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:uwolff@physik.hu-berlin.de

Strong coupling expansion Monte Carlo Ulli Wolff

1. Introduction and conclusions

In recent years a new approach to the simulation of statistical systems ottiteHas been
developed which goes under several names: world line or loop gas Ilflemmall-order strong
coupling (or hopping parameter) simulations or ‘worm’ algorithm methods. HByeidea is to
first reformulate the system as the (complete) sum of its strong couplinggrajnis refers to a
very simple form of the strong coupling expansion that converges asa®mige volume remains
finite. At large correlation length the graphs that have to be included to gimeaise results are
however of forbiddingly high order for a systematic expansion. Usingrialgns similar to those
proposed in[[L] and]2] it has become possible on the other hand to estiraatehnsion of many
observables by a Monte Carlo procedure that samples a represestdtsat of contributions. An
important bonus is that this approach has been demonstrated to at leasténcases be free
of critical slowing down or free of sign problems where this is not so withwkmanethods in
the conventional formulation. The problem of efficiently producing indeljeaitlong distance
correlatedfield configurations is translated into the need of efficiently passing betihegrlevant
large strong coupling graphs. This problem seems to be sufficiently differemeta progress in
cases where for instance cluster algorithms in the conventional setup domko

The topic has been reviewed befoffe [3] at Lattice 2008. It also seenesdiogely watched by
the finite QCD community and typically fills a subsection in their reviews, e [4] andeBolur
Gupta’s contribution to this conference. These may be consulted in particidannection with
progress on the sign problem. In the present contribution we mainly focteomportant success-
ful extension to non Abelian spin models of theN)@nd CPN — 1) type. While the method here
is not confined to two dimensions, most tests are conducted there becausenpiaeisy freedom
and the possibility to probe deeply into the continuum limit. We also cover pregme$ermions
which unfortunately at preseis confined to two dimensioAsand allows for instance simulations
of the Gross Neveu model. Finally we mention here that first steps havenhees toward the
treatment of gauge theories, sgk [6].

2. Theidea: 1sing model as an example

A good starting point to explain the strategy is the two point correlation in thg heidel

2V S (o= €2 TNV a(uo(v)  Zp(u,v)

<O'(U)O'(V)> -V Z{G(X):il} eﬁ Y=y (X)0(Y) Zy

(2.1)
Hereu,Vv are sites on a hypercubic periodic lattice\bsites in arbitrary dimension. 14 (2.1) we
emphasize the view of a correlation as a ratio of two partition functions with atibuwt field
insertions.

In anyfinite volumethe expansiorfsof Zg, Z» in powers ofB are convergent for all values of
B. This includes the vicinity of the critical point and all situations where MontddCamulations
are performed. It will turn out that in general very high ordergimre required to realize this

1see howeve[[s] for ideas for an approximate method bey»ad2.
2An expansion in powers of tarthinstead of8 would appear more efficient for the Ising model, but would be less
easy to generalize below.
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Figure 1. A contribution in%, (left graph) and% (right graph). The boundaries are identified due to torus
boundary conditions

convergence and achieve precision. This is not possible in a systematiated expansion as there
are unmanageably many terms or graphs. As in other physical cases & tmrescue that not all
terms are needed. A Monte Carlo procedure will instead sample a sufficiemilyrtant’ subset of
high order terms. Usual systematic strong coupling expansions are tegstacsmall correlation
lengths but, on the other hand, allow to take the thermodynamic limit of quantitiez,lil& term
by term in the expansion. It is through this step that a finite radius of cgemee emerges which
in many cases (certainly in the Ising model) corresponds to a physica plaasition.

The expansion is set up by using

Y k
oo = 5 Py (2.2)
k!
k=0
for each neighbor pair on each limk= (xy) introducing independent integekél) = 0,...,c on
all links. For each configuratiok= {k(l)} the spins may now be summed over and the partition
functions are given as

Zo=5 BEIWK, Z(uv) = § BEOW. (2.3)
9€% EAN)

In this formula thek-configurations are viewed as graphs of the type shown in[fig. 1. Erere
k(1) lines on each link. The left graph is in the $ét where the spin summation has enforced
the constraint that each site must be surrounded by an even numbersaditidall different such
graphs make u@. The set%(u,V) is visualized in the right graph in Fid] 1 with the red crosses
atu,v surrounded by an odd number of lines due to the extra spin insertiongadtoe

WK =] 0l (2.4)

completes the weight implied b (2.2).
By differentiating Inz we derive the identity for a linkxy) = I’

Blo(o) =5 5 BEHWIKK(I') = (I))e 25)
9%
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As indicated before a typical graph is thusv{n g close to the critical point where the left hand
side is O(1).

A direct simulation of the ensembl in the form [2.B) was tried a long time ago i [7]. The
authors designed a Monte Carlo algorithm that samples graphs (imainly) by local deforma-
tions over plaquettes. They observed critical slowing down comparabtb¢o standard methods.
Probably mainly for this reason the approach does not seem to havebesred much further
at the time. Also the accessibility of physically interesting observables washwius in this
formulation. The two point function for example could in principle be estimated@®sduct over
strings ofk(l) but this would probably be inefficient at long distance due to a large \@ian

A breakthrough was achieved much later[in [1] gjd [2]. The essentiMs a joint simula-
tion of Zg andZ, in an ensemble with the partition function

7 =73 BHIWK = Z(u,v) (2.6)

gEY

where the sum ove, without arguments is over graphs with all possible insertion points

Note that the graph&y contributing toZy are also included as diagonal contributidbmsth u = v.
Expectation values are now defined as

(8) =5 3 BH<WKAL (28)
g€

The identity [2)5) now reads

((k(h)duv))
BloxX)o(y)) = —=—+ = {{k(l
(0090 (y)) = =75 5 = (K1)
and summing over all links= (xy) we measure the internal energy of the original Ising model. In
addition it is easy to establish the connection for general correlations

(0(x)0(0)) = Lo (2.10)

{(Guw))
which in particular implieg(d,y)) = x ! > V1 with the magnetic susceptibility. The fraction
of sampled graphs that belongs4g gets smaller toward the critical point but remains larger than
one out ofV.
In a very simple but useful generalization we include a nonnegative weigtu — v), into
our strong coupling ensemble

(2.9)

o

7= 3 BEOWKpHu-y) = (000(0) = p i) (a1

ged < <5uv> >

We adopt the normalization(0) = 1 andp must respect the lattice periodicity. The advantages of
this modification will be discussed in seft.]3.3.

3Each graply € %, appeadV times in the sum with all possible= v.
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The essential move in a Monte Carlo simulation oftheensemble with partition functio”
is now the following local update step. One may moue one of its nearest neighbors by shifting
it over one of the P links attached to it. At the same time tk@) of that link is changed by
+1 (adding or removing a line af). Of course similar moves may be madevaslternatingly or
picking randomly one of the two insertion points. These allowed moves stayihinw, may be
used now as proposals for Metropolis acceptance steps. We do odbdemny realization here in
all details, but refer to the literature. Concrete procedures foteepansion discussed here may
be found in [] or [8]. Algorithms for the tanB expansion of the Ising model witk(l) € {0,1}
are discussed in detail iff [9], J110].

In these papers it is numerically demonstrated that strong coupling simulafidins [sing
model have very much reduced and in many cases completely eliminated ctitieaigs We
conclude that it is advantageous to enlarge the graph spaceéfytm¥- by allowing defects. This
is true even if we measure i only as in [2.p), but we have seen that the ‘intermediate’ graphs
contain even more interesting information. In these proceedings we cotisidising discussion
only as a preparation for more elaborate models and hence do not reafiasnpance results here
in more detail.

3. Nonlinear sigma models

3.1 O(N)

In [L7]] a generalization of the above strong coupling graph repretsemta the ON) invariant
nonlinear sigma model has been given. In this Ggsgeneralizes to

Zo(u,v) = [|‘| /sté(sz— 1)] B Zi=0 S-S s(1) - 5(v) (3.1)

wheres(x) is anN component unit vector integrated over the sphere.Nrer 1 the Ising model
is obviously recovered. To generate an expansigh we again expand the Boltzmann factor on
each link. To then integrate out the spins for each term in this expansioreeg the integral
over the sphere with an arbitrary monomial in the spin as integrand. Thisriaf@an follows by
differentiation of the generating function with &hcomponent sourcg

00

Jasa(s? - el - > (i) (32)

with coefficients
~ T(N/2)
22T (N/2+n)

deriving from the expansion of modified Bessel functions. Workingtlegitcombinatorics, i.e. the
multiplicities of each term, we arrive‘at

c[n;N] (3.3)

N9l
Z[d]

¥ = Z B KOWIK; N]

9%

x p Hu—v). (3.4)
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k()=2

r=-=|-=-xV

(div K)(x)=4

Figure 2: Schematic view of a grapine % for the ONN) model. The divergence dkmeans the number of
lines around a site.

Several elements in this formula require explanation:

e The graphs% now differ from those in Fig[]1 only in so far that the even number of lines
surrounding a site are connected pair-wise except two lines ending.akhis is visualized
for a simple case in Fig] 2.

e By the pairings (corresponding to contractions of Mepin components) a number [af
closed loops form in the gragl) each contributing a factdy.

e The weightW collectsk(l)! factors and the[n; N] from the site integrations.

e The symmetry factor”’[g] generically equals unity. Only if a graph has extra symmetries
under the exchange of lines then it equals the order of this symmetry grbigis analogous
to symmetry factors in Feynman diagrams. More details on this subtlety are fiouhd

erratum of [IJL].
The relation between the spin correlation and the graph ensemble is clanigdéy the spin
contraction (Beus))
(s(x)-8(0)) = p(X) 51~ (3.5)

((Quv))
The simulation of[(3]4) requires in addition to the update steps outlined befangte moves where
the local line connectivity is changed. It suffices to gaitfor v) and to randomly divorce one of
the line-pairs passing throughThe single line previously ending atis remarried to one of the
divorcees with the other one becoming the new single line. This is again erd@syeMetropolis
proposal that is accepted with a well defined probability dictated by the vesiigi8.4). By taking
into account the asymmetric a priori proposal probabilities, at§g| is seen to be implemented
correctly.
To implement the simulation just sketched, the graph structure including its cirityehas to

be mapped on a discrete structure in the Computer. This is possible by a linkédthie language

4The symbols%,W and later.” are re-used for the different classes of models that we discuss gittbair
precise form becomes context dependent in this way. Factors includfédn the references are sometimes pulled out
and made explicit in this write-up.

5|f there are no such lines (as in F@. 2), no move is made.
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C the configuration can be coded into pointers where each line elemenhgesida link gets a
name and points to its successor and predecessor along its closed |l@ojdlition there must be
integer variables describing the geometrical embedding of the graph orittbe. la

The weightN!9 may be implemented either exactly or stochastically. In the original publi-
cation [11] the exact algorithm (R-algorithm) has been described. In #isis theN-dependent
weight (3.14) is fed into the Metropolis decision. Then it must be known in traute step, if the
passing through line, that is picked for swapping the connectivity, bsltmthe line connecting
andv or if it is part of a separate closed loop. To make this nonlocal informatiaitedle requires
to sometimes travel around one of the closed loops by following the comdsmppointers. As
typical loop circumferences grow in the continuum limit, an elementary reraefecosts more
than O(1) operations. The numerical observatiofi ih [11] can now be stizedas follows. There
is (practically at least) no slowing down in units of iterations correspondingrder OY) ele-
mentary steps. As they cost however slightly more thavi)@perations there is a small effective
critical exponent. It was estimated around: 0.3. This refers to the O(3) model b = 2 with
large volume and correlation lengths=7,...,65 and to the criticaD = 3 model atL. = 32,64.
The name R-algorithm derives from the fact that lermay be taken also to non-integer values
by continuing the weights. For integiirone may formulate the I-algorithm where the weittf
is incorporated stochastically. Then each closed loop as well as the linedretandv carries an
integer degree of freedoim=1,2,...,N that is independently summed over. In the reroute step,
only lines with the sameécan join. Additional update steps are now needed to mové-ldieels.
A minimal way to do this is to randomly assign a new label to the line betwesrdv after OY)
elementary steps. In a short test Tomasz Korzec has verified that tmisfahne I-algorithm shows
very little critical slowing down in the O(3) model f@ = 2 and¢{ in the range mentioned before.
A more detailed description of the R- versus I-algorithm together with nunieeisalts is given in
the paper|[[112] about the loop formulation of the GIP{ 1) model to which we come in seft. 3.3.

3.2 O(3) model with Nienhuis action

We now imagine to restrict the graph summation[in](2.8)[of (3.4) to the subclagsyuifis
which obey the constrairk(l) < 1 on all links, which can be easily implemented in the simula-
tions. In the Ising model this changes tBeexpansion into the tarthexpansion. Thus, if we
accompany the restriction by this substitution we obtain exactly the same comedatibhence
u— v distribution as before. In general the reduced set of graphs isaquotuo starting from

Zo(u,v) = [|‘| /sta(sz—l)] [ |<‘|y>{1+ Bs(x)-s(y)}] S(u) - S(V) (3.6)
z I=(x

instead of [3]1). This is clearly a new lattice model — hence we rerfameﬁ — and the question
arises if it belongs to the same universality class despite its strange apgeaBaich an action has
been introduced beforg J113] and studied in detail by NienHuls [14]. ¥&atiEsolution was obtained

by summing the strong coupling expansion on honeycomb lattices where trgeroapcannot
intersect. The critical region could be reached Kbk 2 with [3 < 1, i.e. a nonnegative weight

in (3.8) and universality was supported. In our simulations there is ablohaesign problem
when takingé > 1 where in the original path integral there seems to be a drastic sign problem. W
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Figure 3: Continuum extrapolation of a step scaling function base@j.

thus simulated the O(3) model wiktil) < 1 and quickly found that no criticality was reached with
fi < 1. To investigate universality we computed a step scaling funcfign [15] &ofifite volume
mass gap extracted from time slice correlations. In fjg. 3 we see that theadats @ccurately
extrapolate to the star which is the exact universal answer knpwn ¢téhis case. These runs
involve values of[~3 in the range B...3.1. Our careful conclusion is that at least for this special
case a universal result is reproduced by (3.6) at a significanispec

3.3 CP(N—1)

Another class of nonlinear sigma models that are of physical interestea@RIN — 1) sys-
tems. There the spins label one dimensional subspaces in complex sgacayeme parameterized
by @(x) € CN,|@(x)| = 1 whereg differing by a phase have to be identified. There are two popular
lattice actions compatible with this structure. One is the explicit gauge field action

—Slp.U] =B S U0 1)@ ()@(x+ 1) +U (%, 1)@" (x+ () @(x)] (3.7)
Xi

where nearest neighbors are coupled with a U(1) gaugedietdu). It is independently integrated
over without an action of its own. As it can absorb local phase changgeggeometric structure
of the model is respected. A second option is provided by the quartic action

~Syl0] =284 Y 0" () (x+ )2 (3.8)
X

which exhibits local U(1) invariance without extra fields. The standapketation is that these
actions are in the same universality class and produce the same continaatargdield theory.

A convenient way to probe the model is by correlations of the adjoint logasity j2(x) =
@' (X)A2@(x), whereA, are a basis of hermitian traceld¢ésc N matrices normalized by 2A°) =
252, j.e. generalized Gell-Mann matrices. Again we focus on the two point function

(2 = 25, @9
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Figure 4: Autocorrelation times in the two dimensional CP(3) modéVlionte Carlo time units comparable
to ‘sweeps’.

By steps that generalize those of the Ising ant)X¥ases and which can be found in detail[ir] [12]
we construct a strong coupling representation (first[fo (3.7))

N9l

5 — Z 323 k(')W[k; N}{Sﬂ[g]

g9c%

x p Hu—v). (3.10)

The complex field variables lead to a modified graph structire

e Each line on a link carries an orientation (arrow) and they are paired aitdwin a way
respecting the sense of arrows.

e There are two lines of opposite orientation running betweandyv.
e On each link there is the same number of arrows in either direction.

The last constraint is a direct consequence of integrating out the d¢tjedfield. In the exponent
k(1) is the number of lineper orientation The weightW is again a local product of explicitly
known [12] terms and”’[g] is the symmetry factor. The connection with the adjoint correlation
can in this case be written as

25ab <<5va,x>>
(N+1) ((duv)

If we repeat the construction starting from the quartic action we arriexadtly the same graph
structure but obtain a different expression\érnd have to replacgd? — Bq-

It turns out [1P] that this model may be simulated by a procedure very similtretmne
described for the () model. For the I-implementation treating the fadt# stochastically we
show measured integrated autocorrelation times in[Fig. 4. We consideracfesiimulations based
on (3.7) withD = 2,N = 4 and fixingL /& ~ 10. The observabl¥ is defined as the right hand side

(i%(0)°(x)) = p(¥) N (3.11)
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Figure 5: Effective mass as a function of time slice separatitor L = 780~ 10¢ in the CP(3) model.

of (2.9) (summed ovel) which also here is equivalent to the internal energy. The susceptigility
and the masm are extracted via the correlatidn (3.11).

By computing a step scaling function the universality between the two latticeataliz of

the CPN — 1) model with actions[(3]} 7) andl (B.8) has been confirmed at high precistenFig. 4
in [L2]) for D = 2,N = 3.

In CP(N — 1) models topology is of special interest. The status here is that the extarfision
(B.10) to include &8 term is given in [1R]. A simulation of this modified system remains to be
tested. Amplitudes in this case are not strictly positive any more, but it is ratrkifior which
values of6 this leads to numerically problematic sign fluctuations.

Itis now time to come back to the usage of the free weigintour simulations. We reaff (3]11)
as follows: If we are able to guess the behavior of the two point functiohuzse this guess for
p(x), then, up to known factors, the histografdy,_vx)) yields the correction factor that turns our
guess into the exact answer. For a perfect guess, it would be ctristather words all possible
separationsl — v would occur with equal frequency. Up to autocorrelation effects weldvihen
expect equal relative statistical err@isall separations One can thus trace the exponential decay
without degrading signal to noise ratio. That this really works in practickdss in Fig.[pb. Here

p was set to the scalar propagator with masgL1@imilar plots are available for Ising and )
simulations.

10
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Figure 6: Loop or hopping parameter expansion graph configuratioa fdajorana fermion i = 2 (left
panel) and = 3 (right panel).

4. Fermions

In [L4] the problem of a 2D Majorana-Wilson fermion in an external sciédd on a two
dimensional torus was formulated as a loop gas and simulated by cluster methsd@/enger
first proposed[[18] that in this formulation this system could alternativelgitreilated with the
‘worm’ algorithm [3] which then triggered the independent stufy [19].tHis case the relevant
partition function with two insertions is

24 —= —

(Ea(WEg(v)) = [|‘| /dfldfze—zm&‘] [|UWGE<X)P(y_X)E(Y)] LWV, (@)

We here integrate over two Grassmann variables perB{ie; x) is the Wilson projector%(l—
Nuyy) if the link isy = x+n and & stands foré "¢ with charge conjugatio®’y, ¢ 1 = —yJ.
An external field is present ih = m(x) is not constant. Due to the projector naturePodind the
Grassmann nilpotency, the expansions of the link factors have only two &aatsk(l) = 0,1)

as for the Nienhuis action. Moreover there can be at most two lines atljcarsite and as a
consequence loops and the line betwa@mdv cannot intersect. A typical configuration is shown
in the left panel of Fig[]6 for a massless free fermion. In this case thelaton is given by

_ u—v K a K
(Ea(x)€5(0)) = p(X) i <<;\(,q3('\|:|)>[;( =

where®(k) is a well defined and readily computable sign angls (k) is a set of 2< 2 matrices
which only depends on the directions in whigtandv are approached by their connecting line.
Although the observable can change sign, this two dimensional fermioroheerious sign prob-
lem, as neither the denominator nor the numerator gets very small. This is ed¢bausulk of
closed loops that close without winding around the torus are all posithis.iJ a specialty of two
dimensional fermions which here appears as the following feature. Ebraased loop there is
the usual fermionic minus sign, but it is canceled by another sign. The ladkesdrom the trace

(4.2)

11
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of a string of Wilson projectors multiplied along the loops. This minus sign camberstood as
the sign that arises when a spinor is parallel transported around therldag eotated by #. For
subtleties related to (anti)periodic boundary conditions of the finite systeredlder is referred to
[[9] and to [20]. In this publication it is also shown hdwspecies of this loop gas can be coupled
to represent and simulate theND(invariant Gross Neveu model in a remarkably efficient way.
The loop representation of the Majorana fermion was generalized@ren2 toD = 3 in [[L9].
Here we still have only two Dirac components and the efficient computabilitydsamged. In the
right panel of Fig.[b we see a configuration from a simulation of a fremifer atm = 0.65 on
a 12 x 24 lattice where we reproduced the propagator very precisely. Makiwgver the mass
smaller and/or the system much larger we very abruptly encounter the fulkidmn problem.
The reason is that iD = 3 the positivity of loops only holds as long as they are planar. If non
planar loops become abundant, the spin factor assumes all values imd(8pas not cancel the
Fermi minus any longer. Instead of Z(8) there would formally be a U(1) irctimtinuum, which is
reduced to Z(8) on the lattice along with rotations being reduced to the hypersubgroup. This
fermionic sign problem is presently unsolved. We consider the sibple3 Majorana fermion as
a good laboratory for further thinking.

5. Triviality of ¢* theory

In four dimensions the number one textbook example for a quantum fieldytigibr a self-
interacting real scalar field is believed to be trivial, i.e. a free field, oncedhénuum limit is
taken. While this is rigorously known to be the caselor 4 and false foD < 4 in the borderline
case ofD = 4 the belief in triviality rests on numerical demonstrations. As a byproduthef
strong coupling reformulation discussed here, we have found a verjt imparoved handle on
such numerical checks for the Ising limit ¢f* which is the most interesting parameter range
for triviality. One of the techniques to obtain rigorous bound®in- 4 has been developed by
Aizenman [2L]. He uses nothing but the all-order strong coupling fortvieehave developed in
sect. [R, called random current representation by him. Quantized taik(nflow through the
links and are conserved mod 2 at sites, with two sourcasatlv. By borrowing his replica trick
and a graph theoretical proposition we could estabfish [8] the followingitgtdar the Ising model
at arbitraryD and volume.P

R= —)X(;anR)D = 2P0 %)) gty (5.1)

In this formula for the usual renormalized coupligg

X is the 2-point susceptibility,

Xa is the 4-point (connected, symmetric phase) susceptibility,

MR is a renormalized mass, for example using the second moment definition,

any fixed values ot = mgL defines a renormalization scheme,

the simulation samples two independent replica of grapyswith corresponding
kK,uu,v,Vv,

12
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Figure 7: Cutoff dependence of the renormalized couplingDo 4, z= 4. By starting integrations of the
Callan Symanzik equation at the leftmost data point theslare produced.

e 2 €{0,1} is an observable computed as follow&” = 1 holds iff all four defects are in
one clusterof an auxiliary bond percolation problem. The bond variables in this problem
are ‘off’ only on links wherek(l) = 0 = K'(I) holds and ‘on’ on all others. From cluster
simulations we know how to efficiently comput¥'.

Note that [5]1) impliesy, < 0, i.e. the Lebowitz inequality is manifest in this estimator. The
advantage of our (Aizenman’s) method lies in not having to perform a ricahe@ancellation to
computex, which avoids a large significance loss. Triviality now amounts to the questi@ther
or notgr ™\, 0 asL/a — . Here for eaclL/a, ( is determined by tuningto the chosen value.

In [B] a study was made for a relatively small volume 2. Although the results fdb = 3,4,5
are consistent with the triviality expectations,bn= 4 there remained some tension in matching
with the perturbative coupling evolution close to the continuum limit. Probably thist ime at-
tributed to the weakly damped fluctuations of the constant mode. We theneémie another study
with z= 4 shown in Fig.[[7. The data points wittya = 8,...,64 have errors of only about the
symbol size in spite of only modest CPU time invested on some PCs. The cogptiray be
identified withgr here. We see a convincing ‘convergence’ of the perturbative evaltieard
the data points at smadl/L (left side in the plot). If we are willing to conclude that this agreement
persists for yet smallea/L then triviality is established fap# (in the Ising limit).
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