PROCEEDINGS

OF SCIENCE

Multi GPU Performance of Conjugate Gradient
Algorithm with Staggered Fermions

Hyung-Jin Kim*, Weonjong Lee

Lattice Gauge Theory Research Center, FPRD, and CTP

Department of Physics and Astronomy, Seoul National University, Seoul, 151-747, South Korea
E-mail: windy510@gmail.com, wlee@snu.ac.kr

We report results of the performance test of GPUs obtained using the conjugate gradient (CG)
algorithm for staggered fermions on the MILC fine lattice (28% x 96). We use GPUs of nVIDIA
GTX 295 model for the test. When we turn off the MPI communication and use only a single
GPU, the performance is 35 giga flops in double precision, which corresponds to 47% of the peak.
When we turn on the MPI communication and use multi-GPUs, the performance is reduced down
to 12.3 giga flops. The data transfer through the infiniband network and PCI-E bus I/O is a main

bottle neck. We suggest two potential solutions of how to optimize the data transfer.

The XXVIII International Symposium on Lattice Field Theory, Lattice2010
June 14-19, 2010
Villasimius, Italy

“Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:windy510@gmail.com
mailto:wlee@snu.ac.kr

Multi GPU Performance Hyung-Jin Kim

1. Introduction

There has been a significant progress in accelerating the computational speed. CPU has kept
improving its computing power but does not yet quench the thirst of those demanding users who
need more computing power for their numerical challenges such as lattice QCD. One bailout was
to make a CPU cluster to do the parallel processing, which also causes a problem of how to han-
dle the scalable communication between nodes. Lattice group at Columbia University developed
customized machines for lattice QCD such as QCDOC [1], which has a great performance in the
nearest neighbor communication.

At present, graphic processing units (GPU) opens a new era for high performance comput-
ing. GPU is originally designed to handle 3-dimensional graphic images. GPU is composed of
many tiny multi processors which are more appropriate architecture to handle the single instruction
multiple data (SIMD) than multi cores of CPU. In addition, the evolution of GPU is very fast. In
Table 1, we summarize the peak performance of the current highend GPUs in the market [2]. The
enormous computing power of GPUs is highly beneficial to lattice QCD.

model peak speed (SP) | peak speed (DP) | memory bandwidth (GB/s)
GTX 285 1062.72 GF 88.6 GF 159.0
GTX 295 1788.48 GF 149 GF 223.8
GTX 480 1344.96 GF 168 GF 177.4

C2050 1.03 TF 515 GF 144.0

Table 1: GPU models and their peak performance. Here, SP (DP) means single (double) precision. GF (TF)
means giga (tera) flops. GB/s means giga bytes per second.

There are several ways to implement the GPU code in the market: Nvidia CUDA API, Open
Graphic Library (Open GL),and Open Computing Language (Open CL). In this paper, we focus
on CUDA and its applications. The CUDA provides us a user-friendly programming environment
based on the C, C++ programming language for GPU. All of our code are compiled and tested
in CUDA version 2.3 and compute capability 1.3 mode. We make the CUDA version of CG
subroutine that is implemented as a part of the Columbia Physics System (CPS) library.

Let us turn to the hardware. We have constructed a GPU cluster whose name is David. The
David cluster has 32 nodes which are connected through the 20 giga bit infiniband network. Each
node has a Intel core i7 920 Processor and two of nVIDIA GTX 295 graphic cards!. We use LINUX
Cent OS version 5.5 as an operating system of this cluster.

2. CG Implementation using CUDA

Conjugate gradient (CG) algorithm [6] is an iterative method for solving a linear algebraic
equation of the following form.

b = Ax, 2.1

At present, GTX 295 graphic cards are upgraded to nVIDIA GTX 480.

Multi GPU Performance Hyung-Jin Kim

where A is a n X n positive definite Hermitian matrix. x and b are complex vectors in the n dimen-
sional space. Matrix A and vector b are given and x vector is a solution that we want to obtain.
Using the CG method we can get the solution X up to the numerical precision that we want to
achieve. In Fig. 1, we show the structure of CG algorithm. In the CG sequence, we have a number

r=>b—Ax r: residual vector
d=r d: directional vector
Spew =T'T €: tolerance

60 = 6new

fOI'(' = 0;i < Ngim&Spew > 8250;+ + l){
O = 8y /dTAd

x=x+ad

r=r— oaAd

6old = 6new

Spew = r'r l} - 6'1ew/601d
d=r+pd }

Figure 1: Conjugate gradient algorithm

of linear algebra equations such as vector addition, dot product, and scalar multiplication and so
on. All of these linear operations are implemented using CUBLAS library [3], except for the Dirac
operation. Note that these operations are not dominant in CG operation, and so CUBLAS Library
is good enough to handle them.

In Fig. 1, Ad and Ax are Dirac operations with staggered fermions [7]. Basically, the Dirac
operation is a matrix-vector multiplication. This is dominant in CG. The matrix A is defined as

follows.
h=Ay (22)
A=—D’4+m? (mis quark mass) (2.3)
Doy = Uy (0)8,0ip — Ul (x— 1) 8yx p (2.4)
Dy (x) =§Uu(x)x<x+u)—UJ(x—u)x(x—u) 2.5)

Here, note that the phase factor 7, (x) is already multiplied to the gauge link U, in the precondi-
tioning part. /4 is a given source vector and is a staggered fermion field which corresponds to the
solution.

At a single site on the lattice, a single Dirac operation of Dy (x) takes 1584 bytes of data
transfer and 576 floating point calculations. Let us consider a MILC fine lattice of 283 x 96. A
single Dirac operation Dy (x) over the entire even sites of the lattice takes 0.6 billion floating point
calculations and 1.6 giga bytes of data transfer. When we use GTX 295 GPUs, it is easy to find out
that the bottle neck is in the data transfer.

Multi GPU Performance Hyung-Jin Kim

gauge link data arrangement for CPU

(0,0,0,0) site (0,0,0,1) site (0,0,0,2) site

Oth elements, 28x28x28x96 1st elements, 28x28x28x96
gauge link data rearrangement for GPU

Figure 2: Data structure for coalesced memory access. CPU read gauge link data in serial way (upper part).
But in GPU, multiple cores can read different data simultaneously. For maximum GPU memory bandwidth,
the data addresses for simultaneous reading and writing should be continuous and multiples of 16 (lower

part).

3. CUDA CG code Optimization

Starting CUDA programming itself is easy and straight-forward. We change 4 dimensional
for-loops into the CUDA thread index. The CUDA makes each core of the GPU perform the CG
calculation at multiple lattice sites in parallel. This simple modification is easy but does not provide
a good performance. It runs at about 1 giga flops per GPU (GTX 295). This is only twice faster
than CPU. Hence, we must improve the performance of the CG code, which we will explain in the
following subsections in detail.

3.1 Coalesced Memory Access

Fig. 2 shows the difference in the memory access pattern between CPU and GPU. The CPU
code accesses each memory address in sequential way. In GPU, multiple cores access different
memory addresses in parallel. If we do not align the memory address in a correct way, then we
can not get the maximum bandwidth of data transfer in GPU. The correct way is called a coalesced
memory access. In the coalesced memory access, the data should be grouped into a multiple of
16 as one can see in Fig. 2. Then the data can be accessed simultaneously from multiple cores at
the highest speed [2]. We have changed our gauge link data and fermion vectors into the coalesced
access pattern. As a result, we gain a 8.5 times performance enhancement.

3.2 Register memory

The GPUs of Nvidia have various kinds of memory area: constant memory, registers, shared
memory, and so on. Registers and shared memory are fast on-chip memory. Hence, if we use
them properly, we can reduce time for global memory access. As a result, we can enhance the
overall performance of GPU. In the Compute Capability 1.3%, each GPU (GTX 295) has 16k bytes
of shared memory and 64k bytes of registers. However, when we use double precision in floating
point calculations, shared memory has intrinsic memory bank-conflict problem?. The bank-conflict

2one of the runtime version in CUDA program

3From compute capability 2.0, there is no bank-conflict using double precision in shared memory

Multi GPU Performance Hyung-Jin Kim

problem means that the data transfer between GPU and shared memory becomes serialized and
slows down by factor of 16 [2]. Hence, when we calculate in double precision, the register memory
shows significantly better performance. Therefore if we use registers instead of shared memory,
we can speed up the program by factor of 3. Hence, the performance reaches 25 giga flops.

3.3 SU(3) reconstruction

In the CG program, the bottle neck is in the data transfer between GPU to GPU memory.
Hence, if we reduce the size of data transfer, then the performance can be improved in principle.
Because gauge links are SU(3) matrices, we can use the 8 or 12 parameters for the SU(3) matrix
reconstruction [5]. For example, the 3rd row of matrix elements can be reconstructed by using the
following equation.

c=(axb)" (3.1)

Vectors a,b, ¢ correspond 1st, 2nd ,3rd rows of a SU(3) matrix, respectively. This reduces the
amount of data transfer by 1/3. On the other hand, we need to do additional 48 floating point
calculations are needed so that the floating point calculation increases by 67%. Furthermore, this
reconstruction uses more registers. As a result, this makes the CUDA occupancy” decrease. The
net gain is about —7%. Hence, the reconstruction method is not helpful.

3.4 Additional Tune-up

The CUDA occupancy is a good criterion to determine how efficiently the kernel runs on the
GPU. It is not a simple object involved in many factors such as the number of registers in use, size
of shared memory in use, number of active threads, and so on. Hence, it is so complicated that
there is no cure-all solution in general.

!
Xq ap ay az X1

!
X | = b] bz b3 X2
!
Xy cl ¢y C3 X3
!
X] =ap*Xx]+ax*xy+az*x3 3.2)
! ! !
X|=ay*x1, X+=ay*xy, X+ =a3%x3 3.3)

We can reduce the number of registers in use per thread down below 64 by using Eq. 3.3. Usual
matrix-vector multiplication is done by Eq. 3.2. In that way, each thread needs total 77 registers.
But if we use Eq. 3.3, then, we need only 61 registers. As a result, 2 threads blocks can be launched
for each multiprocessor. This give us a 7% gain.

Reducing the branch code also gives a better performance. GPU is not good in branch predic-
tion. Hence, removing unwanted branch code can increase the performance. As a result, it provides
additional 30% of performance enhancement to our code.

In addition, we use bit operator and loop unrolling. Each of them gives a few % of performance
enhancements. After all the optimizations, the final performance is about 35 giga flops, which is

4The CUDA occupancy is the ratio of the number of active threads involved in the calculation to the maximum
number of threads.
5 A branch code means part of the code which uses if, else if, switch, and so on.

Multi GPU Performance Hyung-Jin Kim

47% of the peak performance in GTX 295. The GPU code is 76 times faster than the CPU code at
present.

4. Multi GPU usage

In our program, we use MPI for multi GPU implementation. First, each node collects fermion
vectors in lattice boundary on GPU memory space. Next, collected data are downloaded to host
memory. Then, data are transferred to neighbor nodes by infiniband network (MPI). Finally, data
in the host memory is uploaded to GPU memory and repeat the CG calculation. Compared with
single GPU case, using multi GPU needs network communication by infiniband and PCI-E bus I/O.
Unfortunately, data transfer between GPU nodes makes the program slow down dramatically as one
can see in Table 2. In Table 2, we present elapsed time of each operation. Here, the data transfer is

4 node(ms) | 8 node(ms)
GPU calculation time 4.7 2.45
boundary data collect 0.9 0.5
gpu memory to host memory 2.9 2.1
MPI communication 2.3 1.8
host memory to gpu memory 34 1.7
Total time ~ 14.5 ~ 8.6

Table 2: Time stamps of CG program using multi GPUs. Here, ms denotes mili seconds.

dominant (= 70%). The floating point calculation of GPU occupies only 32% in 4 node calculation
and the rest is for data transfer. So we have to make the data transfer faster for better performance.
For better MPI performance, we use the MPI asynchronous network communication mode so that
the CPU can run the next jobs simultaneously during the MPI data transfer . Fortunately, CUDA
also supports asynchronous data transfer between GPU memory and CPU memory. Hence, if we
can overlap cudamemcpy with MPI communication by using asynchronous communication, then
total communication time can be reduced by almost 1/3 in principle.

5. Future Perspectives

Unfortunately, the idea to overlap the network I/O with cudamemcpy 1/O is not working in our
machine. There are two problems. First, simultaneous bi-directional memcpy between GPU and
CPU is not supported yet. Our GPU is GTX 295 which does not support bi-directional memory
copy Therefore, GPU download sequence and upload sequence cannot be overlapped. The second
problem is that the page locked memory cannot be shared by MPI and CUDA. If we use asyn-
chronous memcpy in CUDA or MPI simultaneously, then each operation needs to use its own page
locked memory. But these memory regions cannot be shared by them yet. The two regions of page
locked memory should be located in different memory areas. Hence, it needs additional memory
copy step. This makes the communication optimization more difficult.

But there are possibilities to solve this problem. Actually, the 1st problem is not a problem
anymore. From the FERMI version of Tesla GPUs, they have 2 memory copy engines which

Multi GPU Performance Hyung-Jin Kim

support the bi-directional memory copy [4]. And 2nd problem can also be solved by using the

GPU-direct technology of Mellanox [8]. GPU-direct technology enables us sharing the page locked

memory between GPU and MPI. Hence, additional memory copy between two page locked areas

is not necessary. Unfortunately, we have not tested this functions yet, because we don‘t have

Mellanox device and nVIDIA Tesla GPU. We expect that our machine (Qlogic) can also support

these functions soon.

In near future, mixed precision method will be also implemented for CG, which will enhance

the performance significantly.

6. Conclusion

By using GPUs, we can get a good performance in the CG algorithm for staggered fermions.

The final performance is about 35 giga flops per GPU (GTX 295). GPU is 75 times faster result
then CPU. We notice that data transfer between GPU and GPU memory is a bottle-neck. For better
performance, various optimization methods are used. Including the MPI network communication,

the performance is reduced down to 12.3 giga flops in double precision. At present, we continue

working for the better performance.

The CUDA code of CG with multi GPUs is running in the production mode to calculate hadron

spectrum and weak matrix elements relevant to CP violation in the neutral kaon system [9, 10] at

present.

References

[1]

(2]

(3]

[9]
[10]

P. A. Boyle, D. Chen, N. H. Christ, M. A. Clark, Et al, IBM J. RES & DEV. VOL 49, NO 2/3,
MARCH/MAY 2005.

Nvidia Corporation, “NVIDIA CUDA programming Guide”, 2010,
http ://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf

Nvidia Corporation, “NVIDIA CUBLAS User Guide”, 2010,
http ://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf

Nvidia Corporation, “NVIDIA ‘s Next Generation CUDA Computer Architecture: Fermi”,
http ://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

M.A. Clark, R. Babich, K. Barros, R.C. Brower, C. Rebbi, “Solving lattice QCD systems of equations
using mixed precision solvers on GPUs”, Computer Physics Communication, 182 (2010), 1517-1528.

John K. Reid, On the Method of Conjugate Gradients for the Solution of Large Sparse Systems of
Linear Equations, Large Sparse Sets of Linear Equations (London and New York) (John K. Reid, ed.),
Academic Press, London and New York, 1971, pp. 231-254.

Leonard Susskind, “Lattice fermions ”, Phys. Rev. D, 16, 3031-3039 (1977).

Mellanox Technologies Corporation, “NVIDIA GPU Direct Technology-Accelerating GPU-based
Systems”, http ://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf

Taegil Bae, er al., [arXiv:1008.5179].
Boram Yoon, et al., PoS (LATTICE 2010) 319; [arXiv:1010.4778].

