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We present an adaptive multigrid Dirac solver developed forWilson clover fermions which offers

order-of-magnitude reductions in solution time compared to conventional Krylov solvers. The

solver incorporates even-odd preconditioning and mixed precision to solve the Dirac equation

to double precision accuracy and shows only a mild increase in time to solution for decreasing

quark mass. We show actual time to solution on production lattices in comparison to conventional

Krylov solvers and will also discuss the setup process and its relative cost to the total solution time.
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1. Introduction

Much of the work in lattice QCD goes into the repeated solution of Dirac equation

[D(U)+m]ψ = η (1.1)

for varying sourcesη and/or gauge fieldsU . Typically this is done with a Krylov solver such as
conjugate gradients (CG) or BiCGStab. These methods are known to exhibit critical slowing down
where the time to solution increases rapidly as the quark mass is decreased. This is because the
condition number of the Dirac matrix tends to diverge (for a large enough volume) as the mass
decreases (κ ∼ 1/m), while standard Krylov solvers become inefficient as the condition number
grows (iterations>∼

√
κ).

A lot of work has been done on developing deflation methods that remove a set of low modes
(i.e., eigenvectors with small eigenvalues) from the solver, leading to improvements in the solver
time [1]. However all these methods will require deflating a number of modes that scales linearly
with the volume, which then becomes more difficult as the volume increases. An alternative is
to use the local deflation approach of Lüscher [2] which splits the low vectors into spatial blocks
which then gives a larger span of modes to deflate, and thus does not require a number of vectors
that scales with volume. This splitting of vectors is similar to that done in multigrid methods [3]
which we describe here.

While multigrid methods have been very successful in other fields, their application to lattice
QCD has been difficult due to the complexity of the low modes ofthe QCD Dirac operator. We
have been working to apply the methods of adaptive multigridto QCD starting with plain Wilson
quarks in 2d [4] and 4d [5]. Here we present the extension to 4dclover improved Wilson quarks
and show results of a production-ready implementation using the USQCD software libraries [6].

Adaptive multigrid: The main motivation behind multigrid is the observation that in typical
linear systems (from discretized PDEs) the low modes, whichare responsible for the poor conver-
gence of the solver, are smooth and therefore can be approximated well on a coarser grid which
reduces the effort required to solve for them. The problem isthen essentially split into two parts
with the high frequency components being solved on the original (fine) grid and the low modes
being solved on a coarse grid. The basic multigrid algorithmconsists of alternating between a
relaxation step (smoother) on the fine grid using traditional iterative solvers (typically stationary or
Krylov) and a solve on a coarse grid. This procedure can be repeated recursively to solve the coarse
grid problem, reducing to coarser and coarser grids until the coarsest problem is small enough to
be easily solved.

The key components of the algorithm are the choice of smoother and the operators used for
the coarse solve: restriction,R, used to project the error from the fine lattice onto the coarse;
prolongation,P, (or interpolation) used to bring the coarse grid correction back up to the fine level;
and the coarse operator itself. The multigrid procedure is usually not used on its own and is often
used as a preconditioner for another solver. For our application, with a non-Hermitian Wilson Dirac
operator and our choice of a non-stationary multigrid cycle, we use generalized conjugate residuals
(GCR) as the outer solver. Since the basic algorithm for Wilson fermions has already appeared in
[5], here we will focus on the extensions to that algorithm.

Red-black preconditioning: The common approach to solving for the Wilson Dirac operator
on the lattice is to first employ red-black (even-odd) preconditioning which substantially reduces
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the number of iterations needed to solve the system [7]. We implement this by splitting the linear
system,Dx = b, into even (e) and odd (o) space-time sites as

(
Dee Deo

Doe Doo

)(
xe

xo

)
=

(
be

bo

)
⇒

(
1 DeoD−1

oo

DoeD−1
ee 1

)(
Deexe

Dooxo

)
=

(
be

bo

)
. (1.2)

The mass term is now absorbed intoD. In the preconditioned form,Dpy = b, on the right side of
(1.2), we can solve the reduced system,Drye = br, with

Dr = 1−DeoD−1
oo DoeD−1

ee (1.3)

br = be −DeoD−1
oo bo , (1.4)

for the even sites,ye = Deexe. The matricesDee andDoo are diagonal on the space-time lattice so
we can easily computeDr andbr and reconstructxe = D−1

ee ye andxo = D−1
oo (bo −Doexe).

On the fine level, we use a GCR solver for the reduced system:Drye = br. However the coarse
operator,D̂= RDpP, is a projection of the full even-odd preconditioned matrix(Dp). When solving
the coarse system we again use even-odd preconditioning to solve the reduced coarse system. The
interpolation operator (P) is formed from the low modes of the the full preconditioned operatorDp.
One can easily see that the eigenvectors ofDp andDr are the same on the even sites so that the low
modes of the two are related. For theγ5-Hermitian Wilson Dirac operator, we constructed the re-
striction operatorR usingR = P†γ5. We also split the vectors that formedP into the 2 chiralities in
addition to the space-time blocks, explicitly preservingγ5-Hermiticity on the coarse level and help-
ing to avoid a nearly singular coarse operator. For the Wilson clover case,Dp is notγ5-Hermitian,
however we still use the same construction. Initial tests onsmaller Wilson lattices found a 30%
improvement using the preconditioning, so we have adopted it for clover lattices too.

Implementation: The multigrid solver has been implemented using the US DOE SciDAC
lattice QCD libraries [6] and in particular it is written in the C language version of the QCD data
parallel layer QDP/C. This library has been extended to provide multi-lattice support and improved
arbitraryNc support which is used to implement the coarse level operators (which look similar to a
staggered Dirac operator withNc equal to the number of vectors used to formP andR).

Since the single precision operations are generally fasterthan double precision, we have im-
plemented the multigrid preconditioner in single precision while the outer GCR solver is in full
double precision. In all cases tested so far, single precision is sufficiently accurate to provide a
good preconditioner for the Dirac matrix. For comparison toconventional Krylov solvers below
we have also included a mixed precision version of those based on iterative refinement. Other
mixed precision methods such as reliable updates [8] may perform better at lighter masses, but we
do not expect this to make a large difference in the final results.

In typical multigrid implementations, one has a choice of how many cycles of the coarse solve
and smoothing to perform at each level before going back up tothe next finer level. These choices
include the conventional V-cycle, where no extra cycles areperformed, or a W-cycle, where one
extra cycle at the coarsest level is performed, or some more sophisticated pattern. Here instead
of choosing the pattern up front, we implement the recursivesolver in a truly adaptive fashion
where the coarse grid solver is again a GCR solver preconditioned with another multigrid cycle,
and so on until the coarsest lattice, which is solved with an unpreconditioned GCR. At each level
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Figure 1: Time to solution (in seconds) for a single solve versus quarkmass for various Krylov solvers and
multigrid. The left plot is for the 243×128 lattice and the right is for 323×256.

we only specify the residual tolerance for each GCR solver which then lets the solver at each level
determine how many cycles are needed to reach the requested tolerance. We ran the multigrid
solver with many different sets of parameters and found thata tolerance of around 0.1 is usually
best. This means that the coarse solves do not need to be done very accurately. In all results below
the times reported were for the best set of parameters found for that particular case.

2. Results

We have tested the multigrid algorithm on the Hadron Spectrum Collaboration anisotropic
clover lattices [9]. We have run on lattices of size 243×128 and 323×256 with spatial and temporal
lattice spacings ofas ≈ 0.12 fm andat ≈ 0.035 fm. The light dynamical mass (ml = −0.086)
corresponds tomπ ≈ 220 MeV. For reference the strange quark on these lattices was determined to
bems ≈−0.0743, while the physical light quark mass would be aroundml ≈−0.0867. The sizes
of the coarse lattices and number of low vectors used in the restriction and prolongation operators
are given in table 1. All results were obtained on 256 or 1024 cores of a Blue Gene/P.

Figure 1 shows the time to solution for a single solve as a function of the quark mass for
various solvers for the two lattice volumes. In all cases theconjugate gradients on the normal
residual (CGNR) performed worse than BiCGStab and the mixedprecision solver performed better
than pure double precision. The multigrid solver performs much better than the others and shows
a much smaller increase in time as the quark mass is decreased. For the larger volume the speedup
factor of multigrid compared to mixed precision BiCGStab isabout 1.7× at the heaviest mass,
12.2× at the dynamical light mass and 19.8× at the physical light mass. On the larger volume we
see a sharper increase in time at the smallest masses compared to the smaller volume. We expect
that this could be improved with additional work in the setupand/or adding a fourth level.

In figure 2 we show the total time required to solve different number of right hand sides,
including the setup cost, on the larger volume. For small numbers of solves, BiCGStab is faster
due to the setup time needed for multigrid. As the number of solves increases multigrid becomes

lattice cores 1st coarse lattice # vectors in 1st P 2nd coarse lattice # vectors in 2nd P

243×128 256 83×16 24 43×4 32

323×256 1024 16×8×8×32 24 43×16 32

Table 1: multigrid parameters

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
3
7

Multigrid solver for clover fermions J. C. Osborn

 0

 10

 20

 30

 40

 50

 60

 0  2  4  6  8  10  12  14

m
in

ut
es

propagators (12 solves)

MP multigrid m=-0.074
MP BiCGStab m=-0.074

MP multigrid m=-0.084
MP BiCGStab m=-0.084

MP multigrid m=-0.086
MP BiCGStab m=-0.086
MP multigrid m=-0.0867

MP BiCGStab m=-0.0867

Figure 2: Total time to solution including setup versus
number of right hand sides for mixed precision (MP)
BiCGStab and multigrid at different quark masses.
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Figure 3: Speedup of multigrid solver relative to
BiCGStab versus setup time at the physical quark
mass.

faster due to the improved time per solution. The break even point becomes smaller as the quark
mass is decreased. At close to strange quark mass the crossing is at around 10 full propagators
(of 12 solves each). At the dynamical mass the crossing is at 1full propagator and at the physical
mass it is about half a propagator (6 solves). Of course it is possible to save the vectors and even
the coarse matrix to load back in for later analysis, so for analysis projects on saved configurations,
the setup cost should not be an issue. Only for configuration generation is the setup cost an issue.
Since the main focus for the implementation is currently foranalysis, the setup code has not been
fully tuned and there is still room for improvement both algorithmically and in code optimization.

One still has some freedom to choose how much time to spend in the setup procedure which
then affects the quality of the resulting solver. In figure 3 we plot the speedup for a single applica-
tion of the multigrid solver relative to BiCGStab versus thetime spent in the setup (in units of the
time for a single BiCGStab solve). These results were obtained on the larger lattice at the physical
quark mass. If we spend about 6 BiCGStab solves worth of work in the setup we get a solver that
is about 20× faster than BiCGStab, which is what was used in the previous figures. If we lower the
setup cost to about 3 BiCGStab solves, then the solver speedup reduces to around 11×.

We can see how this freedom can be used to optimize the total time in figure 4. Here we
show the total solution time including setup versus number of solves for the four different setups
shown in the previous figure. These runs were again done on thelarger lattice at the physical mass.
Here we see that the smallest setup time gives the best total performance up to about 4 propagators
at which point the second smallest setup becomes best. The third setup takes over at around 8
propagators and the last at around 25. Thus if the setup is notbeing saved for reuse at a later time,
one can optimize the setup for the particular work being done.

In figure 5 we compare the performance of the 2-level and 3-level multigrid algorithms for
both lattice sizes. For heavier masses the difference between 2 and 3 levels is small while both are
still better than BiCGStab. For lighter masses the 3 level algorithm is clearly better and is about
2.5× better at the physical quark mass. As noted earlier the increase in time seen for the 3-level
algorithm at the lightest quark masses suggests that improving the coarse level with additional work
in the setup and/or adding a fourth multigrid level may be beneficial here.

In figure 6 we show how the relative speedup of multigrid over BiCGStab varies with the re-
quested residual tolerance. These results are obtained at the physical mass. For the smaller volume
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Figure 5: Comparison of 2 and 3 level multigrid al-
gorithms on both lattice sizes.

the speedup appears to stay constant as the tolerance changes, however for the larger volume, the
speedup tends to increase as the tolerance is lowered. Thus the multigrid algorithm is even more
effective for smaller tolerances.

Although the residual is typically used as the measure of convergence due to it being readily
available, what usually matters for observables is the actual error defined bye = D−1b− x. It is
related to the residualr by r = b−Dx = De. Since the residual is the error multiplied byD, it is
not as sensitive to low modes. In figure 7 we plot the ratio of the magnitude of the error to the
magnitude of the residual versus the magnitude of the residual for BiCGStab and multigrid at the
physical mass. In order to know the exact solution, we first take a point source (p), then solve
against that to get an approximate solutionx0 ≈ D−1p. We set the right hand side to beb = Dx0 so
thatb is approximately a point source and its exact solution is known. The error is very stable for
multigrid and stays at about 40−50× the residual for both lattice volumes. The BiCGStab error
fluctuates wildly at about 5−10× larger than the multigrid error and appears to grow with volume.

3. Setup procedure

Currently the setup procedure consists of a sequence of repeated relaxations (inverse iteration)
on a random vector,v, while monitoring the Rayleigh quotientv†D†Dv/v†v to determine when
the vector has converged well enough onto the low modes of thesystem. During this process
we also keep the current vector globally orthogonal to the previously converged vectors. The
main motivation for implementing this setup procedure is its simplicity since one doesn’t need
to construct coarse operator until all the vectors are found. It is also relatively easy to vary the
number of iterations and the convergence criteria to tune the cost of the setup and consequently
the efficiency of the resulting solver. However the main drawback of this procedure is that the
resulting vectors may be locally redundant within the blocks. More sophisticated setup procedures
have been developed to avoid this problem. One such setup procedure is used in the adaptive
smooth aggregation (αSA) method [10]. Here one constructs a multigrid cycle out ofthe currently
available vectors and uses that solver to relax on random vectors which will then give a new vector
which is rich in the modes that the current solver is bad at resolving. This requires construction of
coarse operator several times during the setup process which adds to the complexity and possibly
also the time of the setup. A hybrid approach combining theseprocedures was developed for the
Wilson case with promising results [5]. We plan to implementthis for the clover case in the future.
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requested residual tolerance. On the larger lattice we
see the speedup increase as the tolerance decreases.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1e-12  1e-11  1e-10  1e-09  1e-08  1e-07  1e-06

er
ro

r 
/ r

es
id

ua
l

residual

MP BiCGStab 323x256
MP BiCGStab 243x128

MP multigrid 323x256
MP multigrid 243x128

Figure 7: Ratio of magnitude of error to magnitude
of residual versus magnitude of residual for BiCGStab
and multigrid.

4. Summary and plans

We have developed an efficient implementation of a Wilson clover multigrid solver, currently
being used in production for the calculation of disconnected diagrams. For light quarks we see a
10−20× reduction in time to solution. We also note that the error is very stable and relatively small
compared to Krylov solvers and that the speedup and relativeerror improves for larger lattices. We
are now in the process of testing it on larger lattices and working on optimizing the code so it can
be extended to even coarser lattices. Currently the solver is a great improvement for medium to
large analysis projects where the setup cost can be amortized over many solves. We are working
to improve the setup process to provide the same or better quality solver and lower cost so that it
can be readily used in smaller projects or in configuration generation. Finally we are working on
multigrid for domain wall and staggered quarks, as well as porting these solvers to GPUs.
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