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In a recent publication [1] we have proposed a preconditioning of the Dirac operator based on the
factorisation of a predefined function related to the decay of the propagator with the distance. In
this talk we discuss this numerical technique by arguing that it can be profitably used in order to
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1. Introduction

In order to calculate observables in a typical lattice QCD simulations one needs to solve nu-
merically a linear system of the form

∑
y

(D[U ]+M)x,y S(y) = η(x) (1.1)

where D[U ] is the chosen discretization of the massless interacting Dirac operator, M is the quark
mass in lattice units, η(x) is a source vector that is different from zero on a single time-slice (that
without any loss we shall assume to be at x0 = 0). The solution S(y) is obtained by iterative numer-
ical algorithms, solvers, devised to invert so-called sparse matrices, i.e. those matrices that result
from the discretization of differential equations by finite differences methods. Roughly speaking
(see ref. [2] for a detailed review and for an updated list of references) a solver gets the solution by
applying the sparse matrix a few times, by performing a bit of linear algebra and by checking that
the condition ∣∣∣∣∣∑y

(D[U ]+M)x,y Sn(y)−η(x)

∣∣∣∣∣< r (1.2)

is satisfied. Here Sn(y) is the tentative solution at iteration number n, the norm is any good norm in
field space and r, the residue, is the global numerical accuracy requested for the solution. Typically
r is a small number of the order of the arithmetic precision allowed by the computer architecture.

For light quarks the matrix (D[U ] + M)x,y is badly conditioned and its numerical inversion
requires a big number of iterations. At the other extreme, the number of iterations required for
heavy quark masses is small but there may be problems with the numerical accuracy resulting for
the time-slices far away from the source (y0� 0). Indeed eq. (1.2) is a global condition while for
heavy quark propagators the time-slices far away from the source are exponentially suppressed by
a factor of the order of exp(−My0) and give a negligible contribution to the norm on the left side
of eq. (1.2). When this problem arises one cannot trust numerical results at large times and it be-
comes impossible to extract physical informations by fitting the leading exponentials contributing
to correlation functions. In the rest of this talk we shall illustrate a preconditioning technique that
can be profitably used in alleviating both these difficulties.

2. Heavy quark propagators decay too fast!

In the following we shall work with the O(a)-improved Wilson lattice Dirac Operator but
the numerical problems that we address arise also with alternative discretisations of the continuum
action and the proposed solution can as well be easily implemented in those cases. We first illustrate
the numerical problem. It arises when the product of the mass of the quark with the size of the
lattice in the time direction is big. As an example, we have calculated the correlation function

CPP(y0) =−∑
~y

tr
[
S†(y)S(y)

]
=−∑

~y
tr |S(~y,y0)|2 (2.1)

by solving eq. (1.1) for a heavy quark propagator of mass M ' 0.5 in the free theory for different
choices of the residue. More precisely the red points in Figure 1 have been obtained with a residue
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Figure 1: The red points correspond to the correlation function −CPP(y0) obtained by inverting the lattice
Dirac equation in the free theory with M ' 0.5 and with a residue r = 10−11. The black points correspond
to the same quantity but have been obtained with a residue r = 10−6. The blue points correspond to the
correlation function −C′PP(y0) obtained by solving the preconditioned lattice Dirac equation with M ' 0.5
and α0 = 0.4. The two black lines correspond to r2 for the two values of the residue used in the calculations.
We use logarithmic scale on the y-axis.
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Figure 2: The red and black sets of points are the effective masses of the corresponding correlators shown
in the previous figure. The blue set of points is the effective mass of the corresponding correlator in the top
panel multiplied for the restoration factor as explained in the text.

r = 10−11 while the black points with a residue r = 10−6 and the two black lines correspond to the
squares of these two values of r. As is clearly visible from Figure 1, and from Figure 2 where we
show the effective masses of the correlations shown in Figure 1, the black points start to deviate
from the red ones for y0 ' 18, i.e. when the correlator, which in this case is just the square module
of the propagator (see eq. (2.1)), becomes smaller than the square of the "loose" residue r = 10−6.
That’s what we mean by saying that "heavy quark propagators decay too fast!".

If the time extent of the lattice is not too large the problem can be solved by brute force by
lowering the residue and the results obtained in the preset case with r = 10−11 can be considered as
exact. If instead the time extent of the lattice is rather large the brute force approach cannot be con-
sidered because the required residues would be smaller than what is allowed on double-precision
architectures, even in the case of moderately heavy quarks. In the case under consideration, by
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choosing a loose precision, i.e. a residue r = 10−6, we make the numerical problem evident and
we show that also such an "extreme" situation can be recovered by using our proposal. Moreover,
we notice that a residue r = 10−6 is the smallest allowed on single-precision architectures that
presently are considerably much faster than double-precision ones.

We now come to the proposed solution. We redefine the quark fields and the propagators as
follows

S(~y,y0) =



α(0)
...

α(0)
α(1)

...
α(1)

...
...

α(L0−1)


︸ ︷︷ ︸

α(y0)



S′(•,0)
...

S′(•,0)
S′(•,1)

...
S′(•,1)

...

...
S′(•,L0−1)


︸ ︷︷ ︸

S′(~y,y0)

η(y) = α(y0) η
′(y) (2.2)

The function/matrix α(y0) is diagonal in colour, Dirac and space indexes and must be invertible.
Once the previous expressions are inserted in eq. (1.1) one gets the preconditioned system

∑
y

(D′[U ]+M)x,y S′(y) = η
′(x) (2.3)

that is solved numerically in place of eq. (1.1). In order to write the preconditioned Dirac operator
it is sufficient to modify the forward and backward lattice covariant derivatives in the time direction
according to

∇0S(y) = U0(y)S(y+ 0̂)−S(y) −→ α(y0 +1)
α(y0)

U0(y)S′(y+ 0̂)−S′(y)

∇
†
0S(y) = S(y)−U†

0 (y− 0̂)S(y− 0̂) −→ S′(y)− α(y0−1)
α(y0)

U†
0 (y− 0̂)S′(y− 0̂) (2.4)

If as in the case of Figure 1 S(y) satisfies anti-periodic boundary conditions along the time direction,
it follows from eq. (2.2) that

S(y+L00̂) =−S(y) −→ S′(y+L00̂) =− α(y0)
α(y0 +L00̂)

S′(y) (2.5)

The blue points in Figure 1 correspond to the correlation function

C′PP(y0) =−∑
~y

tr
[
(S′)†(y)S′(y)

]
(2.6)
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Figure 3: The red points correspond to the effective mass of the correlation function−CPP(y0) obtained by
inverting the lattice Dirac equation in the interacting theory with ampcac

h ' 0.35 and with a residue r = 10−11.
The black points correspond to the same quantity but have been obtained with a residue r = 10−6. The blue
points correspond to the effective mass of the restored correlation function −C′PP(y0) obtained by solving
the preconditioned lattice Dirac equation with ampcac

h ' 0.35 and α0 = 0.4.

obtained by solving eq. (2.3) with the loose residue r = 10−6 but after having factorized the function

α(y0) = cosh[α0(y0−L0/2)] (2.7)

with α0 = 0.4. As expected, the preconditioned correlator stays above the line of the loose precision
residue and the "exact" result can be back recovered as follows

CPP(y0) = [α(y0)]
2 C′PP(y0) (2.8)

In Figure 2 the blue points correspond to the effective mass of the preconditioned correlator after
the "restoration" of eq. (2.8) and fall exactly on top of the red ones in spite of the fact that they have
been obtained with the same loose precision that affected the non preconditioned black points.

In Figure 3 we show the same plot as in Figure 2 but in the interacting theory. The par-
ticular gauge ensemble used correspond to the entry E5 in Table 1. The size of the lattice is
L0L1L2L3 = 64× 323 and the hopping parameter of the sea quarks is ksea = 0.13625 correspond-
ing to a PCAC quark mass of about amPCAC

sea ' 0.07. The data shown in Figure 3 correspond to
a pseudoscalar-pseudoscalar correlator, as in the free theory case, of two degenerate heavy quarks
with hopping parameters kh = 0.125 corresponding to a PCAC quark mass of about amPCAC

h ' 0.35.
The unpreconditioned correlators decay approximately as fast as as in the free theory case and from
the difference of the black (unpreconditioned, r = 10−6) and red (unpreconditioned, r = 10−11)
sets of data we see the same distortion of Figure 2. The blue points have been obtained by solv-
ing eq. (2.3) after having factorized α(y0) with α0 = 0.4 and by restoring the results according to
eq. (2.8). Also in the interacting theory the blue points are identical to red points though they have
been obtained with the same loose residue r = 10−6 used to obtain the black points.

We close this section by observing that our preconditioning technique may be particularly
useful when working with the Schrödinger Functional (SF) [3, 4] formulation of the theory. In this
case, contrary to the case of periodic boundary conditions along the time direction, the correlators
decay exponentially over the whole time extent of the lattice and one has to choose very small
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Figure 4: The black points correspond to the correlation function−CPP(y0) obtained by inverting the lattice
Dirac equation in the Schrödinger Functional free theory with M ' 0.5 and with a residue r = 10−8. The
blue and red points correspond to the preconditioned quantity (before restoration) obtained with α(x0) =
exp(−α0x0) at different values of α0. The red points stay above the residue threshold (black solid line) at
all times and fall exactly on a straight-line, the theoretical prediction for this quantity by using logarithmic
scale on the y-axis.

residues also in computing relatively light quark propagators. In Figure 4 we show the correlator
−CPP(x0) in free theory on a lattice with SF boundary conditions in the time direction (L0 = 64):
this quantity must be a straight line in logarithmic scale while starts to bend in the unpreconditioned
case (black points) at large times when the propagator becomes smaller than the residue (here
r = 10−8). By using our preconditioning with α(x0) = exp(−α0x0) and an appropriate value of
α0 it is possible to perform a safe inversion also in the SF case. We have observed the same
phenomenology also in the SF interacting theory.

3. Preconditioning light quark propagators

The ideas developed and discussed in the previous section can be used to accelerate the nu-
merical calculation of light quark propagators by generalising eq. (2.2) as follows

S(y) = β (y0,y1,y2,y3) S′(y)

η(y) = β (y0,y1,y2,y3) η
′(y)

β (y0,y1,y2,y3) =
3

∏
µ=0

α(yµ) =
3

∏
µ=0

1
cosh[α0(yµ −Lµ/2)]

(3.1)

The preconditioned lattice Dirac operator can be obtained as easily as before by changing accord-
ingly the covariant derivatives in all directions as done in eqs. (2.4) and (2.5) for the time direction
only. An important difference of the present case with respect to the one discussed in the pre-
vious section is that the restoration of the true propagator must be performed before making the
contractions needed to build correlation functions by using the first of eqs. (3.1).
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β L0L1L2L3 ksea r α0 iterations

D5 5.3 48×243 0.13625 10−11 0.0 175
D5 5.3 48×243 0.13625 10−11 0.4 141

E3 5.3 64×323 0.13605 10−10 0.0 99
E3 5.3 64×323 0.13605 10−10 0.2 78
E3 5.3 64×323 0.13605 10−10 0.4 69

E4 5.3 64×323 0.13610 10−10 0.0 115
E4 5.3 64×323 0.13610 10−10 0.2 91
E4 5.3 64×323 0.13610 10−10 0.4 81

E5 5.3 64×323 0.13625 10−10 0.0 194
E5 5.3 64×323 0.13625 10−10 0.2 153
E5 5.3 64×323 0.13625 10−10 0.4 141

Table 1: Gauge configurations have been generated with n f = 2 dynamical O(a)-improved Wilson quarks
with csw = 1.90952. The figures in the last column correspond to the average of the number of iterations
required to invert the Dirac equation in the unitary theory by using the SAP+GCR inverter for several values
of the preconditioning parameter α0. The values corresponding to α0 = 0.0 have been obtained without
using our preconditioning technique.

By judiciously choosing the parameter α0 it is possible to change the condition number of
the preconditioned system without compromising the numerical accuracy of the solution and in
Table 1 we quantify the gain in computational time that can be achieved by showing the number
of iterations of the SAP+GCR solver required to solve the lattice Dirac equation for light quarks
with and without our preconditioning. The SAP+GCR solver has been introduced and explained
in details by the author in ref. [5]. The parameters of the gauge ensembles used to perform this
test are given in the table and have been generated within the CLS agreement [6]. We thanks our
colleagues of the CLS community for sharing the efforts required to generate the dynamical gauge
ensembles used in this study.
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