
P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
4
4

Implementation of the Neuberger-Dirac operator on
GPUs

Bjoern Walk∗ and Hartmut Wittig
Institut für Kernphysik, Johannes Gutenberg-Universität Mainz,
Johann Joachim Becher-Weg 45, 55099 Mainz, Germany
E-mail: bwalk@kph.uni-mainz.de,wittig@kph.uni-mainz.de

Egor Dranischnikow and Elmar Schömer
Institut für Informatik, Johannes Gutenberg-Universität Mainz,
Staudingerweg 9, 55099 Mainz, Germany
E-mail: {dranisch,schoemer}@informatik.uni-mainz.de

Recent developments have shown that a lot can be gained for QCD simulations from GPU hard-
ware. This can be exploited especially in the case of Ginsparg-Wilson fermions when the com-
putational costs are particularly high. In this work, we use the Neuberger-Dirac operator as our
realisation of Ginsparg-Wilson fermions, which greatly facilitate lattice investigations of decays
like K→ ππ . We report on the ongoing study of our GPU implementation of the Neuberger-Dirac
operator including the exact treatment of the low lying eigenmodes of the Wilson-Dirac operator.
Our benchmarks show that we achieve speed-up factors of around 23 and 16 in single and double
precision, respectively.

The XXVIII International Symposium on Lattice Field Theory, Lattice2010
June 14-19, 2010
Villasimius, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:bwalk@kph.uni-mainz.de,wittig@kph.uni-mainz.de
mailto:protect T1	extbraceleft dranisch,schoemerprotect T1	extbraceright @informatik.uni-mainz.de

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
4
4

The Neuberger-Dirac operator on the GPU Bjoern Walk

1. Introduction

In the past years the GPU, the core of hardware responsible to display images on computer
screens, became more and more flexible and powerful. The GPU soon surpassed the CPU in terms
of raw computational power, and various fields in science found a way to exploit this (see also the
review in [1]). For the lattice community, ref. [2] set out one ground-breaking paper in which it
was demonstrated how to map the Wilson-Dirac operator on the GPU. With the introduction of
NVIDIA CUDA, a flexible programming model was given and made it even easier to access the
ever-increasing computational power. This was the basis for the reference paper [3].

Using GPUs could be particularly important in order to simulate Ginsparg-Wilson fermions
[4] which possess an order-of-magnitude higher computational costs than Wilson fermions.

One particular solution to the Ginsparg-Wilson relation is the Neuberger-Dirac operator which
we are studying in this paper. A lattice Dirac operator which satisfies chiral symmetry at nonzero
lattice spacing greatly facilitates the investigation of certain processes like non-leptonic kaon de-
cays. These decays raise the long-standing problem for QCD phenomenology why the ∆I = 1/2
amplitudes are so much larger than the ∆I = 3/2 amplitudes. The bulk of the enhancement must
be due to strong interactions [5] at low energies and therefore, a reliable explanation must be based
on systematic non-perturbative methods, in particular on lattice QCD [6].

So far, a lot of effort has been invested to understand and quantify the effects responsible
for the enhancement of the ∆I = 1/2 amplitudes. A series of simulations were performed using
quenched calculations in the SU(4)-symmetric case in order to understand the effect of the charm
quark [7]. One particular approach is to do simulations outside the GIM-limit with an active charm
quark and reasonable large volumes to study finite-volume effect.

In this paper we report on the ongoing development of our tools for numerical simulations in
the ε-regime utilizing GPU hardware for acceleration. We show details of the theoretical back-
ground and implementation for our Wilson-Dirac kernel and for the Neuberger-Dirac operator. We
give performance results for both operators and the calculation of low lying eigenmodes of the
Wilson-Dirac operator. At the end we give an outlook about planned work.

2. Implementation details

2.1 The Wilson-Dirac operator

Following Wilsons formulation for lattice QCD, the γ5-Hermitian, massive Wilson-Dirac op-
erator Q used in our implementation is defined by

DWφ(x) = (4+m)φ(x)− 1
2

±3

∑
µ=±0

Uµ(x)(1− γµ)φ(x+aµ̂), Q = γ5DW, (2.1)

where m is the bare mass of the fermion. Gauge links Uµ(x) and the Dirac matrices γµ follow

U−µ(x) =U−1
µ (x−aµ̂) and γ−µ =−γµ . (2.2)

The most important part in the implementation of the operator is the data layout. Data read and
written to global device memory on the GPU has to fulfill several constraints, known as coalescing

2

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
4
4

The Neuberger-Dirac operator on the GPU Bjoern Walk

rules [8], to ensure maximum performance. One of them requires that consecutive threads read
data words in sequential order. A data word can have 32-, 64- or 128-Bytes. In [2] a data layout
for the fermions fields and the gauge links was introduced which is nowadays considered as the
default and our implementation follows that, too.

Since the Wilson-Dirac kernel is memory-bound, we intend to minimize memory access. It is
possible to save memory load instructions by realizing that one does not need the whole 18 entries
of the gauge link matrices as they fulfill the orthogonalization relation U†U = 1 of the SU(3) gauge
group. In total, we need a minimum of 8 parameters to uniquely define an element of the gauge
links. Each element of SU(3) can be expressed as a linear combination of Gell-Mann-matrices, and
in principle one could choose the coefficients in this linear combination as parameters. However,
although the reconstruction comes practically for free, we should not introduce any overhead in
the reconstruction. A reconstruction based on Gell-Mann matrices is not beneficial in terms of
numerical effort. A much better approach is presented in [3, 9] which also has the advantage,
that the inverse operation, i.e. finding the parameters for a given SU(3)-matrix, is simple. Another
simple reconstruction scheme is based on the property

U =

a1 b1 c1

a2 b2 c2

a3 b3 c3

 ~c = (~a×~b)∗, (2.3)

that one column of the matrix can be reconstructed by the other two.
The rest of the implementation is fairly straightforward since there is no communication nec-

essary if we assign each lattice site of the resulting fermion field a single thread. We explicitly write
down the multiplication in Dirac-space of the eight directions µ = ±0 . . .± 3, unroll the matrix-
vector multiplication in color space after reconstruction and accumulate the resulting fermion in
local registers. After the multiplication with γ5, we write the result to global device memory.

2.2 The Neuberger-Dirac operator

Following the conventions and notations from [10], the Neuberger-Dirac operator DN [11] can
be defined in terms of the Wilson-Dirac operator DW

DN =
1+ γ5 sign(Q)

ā
, Q = γ5(aDW−1− s). (2.4)

In this definition, |s| < 1 is a tunable parameter while the sign-function has to be defined by its
series expansion. For numerical stability we choose Chebychev polynomials, so the sign-function
of the operator Q is given by

sign(Q)' XPn(X2), X ≡ Q
||Q||

and Pn(x) =
n

∑
k=0

ckTk(x). (2.5)

The definition of the Chebychev polynomials Tk(y) can be found in [12]. Because Chebychev poly-
nomials fulfill a recursion relation they permit an evaluation via the Clenshaw recurrence formula.

In order to find the coefficients ck of the expansion, we aim to minimize the error

δ = max
ε≤y≤1

|h(y)|, h(y)≡ 1−√yP(y) (2.6)

3

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
4
4

The Neuberger-Dirac operator on the GPU Bjoern Walk

of the polynomial expansion for specified ε . In the range
√

ε ≤ |x| ≤ 1 the function xP(x2) then
approximates sign(x) uniformly with a maximal deviation δ . Polynomials constructed in such a
way are often referred to as minmax polynomials. If ε is chosen such that Q2 ≥ ε‖Q‖2, the error in
(2.5) is an operator with norm less than or equal to δ . The approximation error is always bounded
by δ‖η‖, uniformly in the field η to which the operator is applied.

This method is straightforward, but in the case of the ε-regime actually not recommended. In
this case, the operator Q2 may have some exceptionally low-lying eigenvalues, and it is far more
efficient first to separate the few lowest modes and to treat them exactly.

2.3 Low-mode projection

The spectrum of Q in the vicinity of the origin can be reliably determined by minimizing the
Ritz functional of Q2 [13]. Thereby, we also find an approximation of the associated eigenvectors.
In order to control the error of the total approximation, we need to examine by how much these
vectors deviate from the true eigenvector [10].

Assuming that a specified number l of approximate eigenvectors has been computed, we de-
note the linear space spanned by these vectors by V and by P the corresponding orthonormal pro-
jector. We shall take it for granted that the eigenvalues νk of Q are separated from zero and from the
rest of the spectrum by a distance greater than ρ . This number measures the deviation of V from
being an exact eigenspace of Q. The presence of a spectral gap around zero implies that the subset
of positive and negative eigenvalues can be identified without any numerical ambiguity. With the
introduction of the eigenvectors uk ∈ V , PQuk = νkuk, the associated orthonormal projectors are
given by

P+ = ∑
νk>0

uk⊗ (uk)
† and P− = ∑

νk<0
uk⊗ (uk)

† (2.7)

respectively. In the same way we may define the projectors (P±)exact to the subspaces spanned by
the corresponding exact eigenvectors of Q with positive and negative eigenvalues λk. We can give
a quantitative estimate on the deviation of the computed projectors P± from the exact projectors
(P±)exact. The total error depends on the size of the residues

ρk = ‖(Q−νk)uk‖ (2.8)

and also on the distance between the eigenvalues, as a small value of ρk does not exclude sizeable
mixing of uk with several eigenvectors of Q if these have eigenvalues that are within a distance ρk of
νk. When estimating the deviation of the projectors rather than that of the individual eigenvectors,
the interesting quantity is the distance dk of νk from the exact spectrum of Q in the subspace that is
orthogonal to the range of (P+)exact if νk > 0 if (P−)exact if νk < 0. The quality of the approximation
is then controlled by the parameters

κ
2
± = ∑

±νk>0
ρ

2
k /d2

k , κ± > 0 (2.9)

and an upper bound for the deviation of the projectors can by given by

‖P±− (P±)exact‖ ≤
κ±(1+2κ±)

1−2κ±(1+2κ±)
. (2.10)

4

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
4
4

The Neuberger-Dirac operator on the GPU Bjoern Walk

GTX285 GTX480 C2050

No. of Cores 240 480 448
Memory amount [MB] 2048 1536 3072

Shader Clock [MHz] 1476 1401 1150
Memory Clock [MHz] 1242 1848 1500

Memory Bandwidth [GB/s] 159.0 177.4 144.0

Table 1: Key specification of the three NVIDIA GPUs available for benchmarking. For the C2050, roughly
10% of total memory amount has to be subtracted if the error correction ECC is enabled by the driver.

In our implementation, the whole computation of the projectors is performed on the GPU. The
number of low modes included in the projector will be determined dynamically in such a way that
the spectral distance from the other modes is not accidentally small. The parameters κ± can be
estimated without difficulty and the Ritz functional is stopped when the desired level of precision
is reached. Afterwards, we replace Equation 2.5 by

sign(Q)' P+−P−+(1−P+−P−)XPn(X2), (2.11)

and it can be shown that the approximation D̃m
N to the massive Neuberger-Dirac operator satisfies

‖D̃m
N−Dm

N‖ ≤
2
a

(
1+ s− am

2
)(

κ++κ−
)
. (2.12)

3. Results

For performance results we have tested the GeForce GTX285 GPU, a current generation card,
and the GeForce GTX480, as well as a Tesla C2050 GPU, the latter of which are both based on the
recently released Fermi chipset. The code, however, was not optimized for the new architecture
and we expect further enhancements in the future. An overview of the key features of each GPU is
given in Table 1.

We have already stated that the performance of the Wilson-Dirac kernel is memory bound. In
our optimization we aimed for maximizing the total memory bandwidth achieved by our imple-
mentation. This also means that we should not expect strong scaling as the number of cores is
increased. The major contribution to the performance of the calculation comes from the memory
bandwidth.

In Figure 1 the performance of the Wilson-Dirac kernel in single- and double precision is
given as a function of the lattice volume. The double precision data curve on the C2050 is missing
because we had only limited access to the GPU and it was not available anymore at the time of our
testings.

We can see a nearly constant behaviour for sufficient lattice volumes. On the GTX285 we
observe a small peak at T = 64 which we believe is largely accidental. For double precision we see
a decrease of the performance by a factor of around 8. On the GTX285, this comes from the fact
that there is only 1 double precision unit while 8 single precision units are available. In principle,
the architectural design of the GTX480 should give up to half of the single precision speed in

5

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
4
4

The Neuberger-Dirac operator on the GPU Bjoern Walk

100

120

140

160

180

32 64 96

G
Fl

op
/s

Time extent T

GTX 285
GTX 480

Tesla C2050
0

10

20

30

16 32 48 64

Time extent T

GTX 285
GTX 480

Figure 1: Performance result for the application of the massive Wilson-Dirac operator Q. LEFT: Sin-
gle precision performance. RIGHT: Double precision performance. The spatial extent L is fixed at 243

throughout.

0

5

10

15

20

25

30

0 16 32 48 64 80

Sp
ee

du
p

τ
SS

E
/τ

G
PU

Time extent T

FP32
FP64

0

1

2

3

4

5

44 84 164

Lattice volume

FP64

Figure 2: LEFT: Performance result of the application of the Neuberger-Dirac operator D as compared to
the SSE2-optimized CPU version. The spatial extend L is fixed at 243. RIGHT: Performance result for the
calculation of low-lying eigenmodes of the Wilson-Dirac operator Q. The plots show the speed-up factor
τSSE/τGPU in single and double precision, respectively.

double precision. NVIDIA, however, restricts this to a quarter of the single precision speed inside
the driver. This drop in performance can be explained by the fact that we did not optimize for
the new chipset. The final result for the Wilson-Dirac kernel gives around 140GFlop/s on the
GTX285, 150GFlop/s on the C2050 and 170GFlop/s on the GTX480 in single precision. For
double precision we achieve 22GFlop/s and 25GFlop/s on the GTX285 and GTX480 respectively.

In Figure 2 the performance of the Neuberger-Dirac operator in single and double precision is
illustrated as a comparison to the SSE2-optimized CPU version. The execution time of the operator
is normalized on the number of Clenshaw iterations and the lattice volume. The CPU version was
run on an Intel E6400 Core2 with a single core clock rate of 2.13GHz. The GPU version was run
on the GTX285. We can observe a nearly constant behaviour in the execution time in dependence
to the lattice volume. For single precision, the SSE2 version has an average of τSSE = 0.877 µs and
the GPU version of τGPU = 0.038 µs, giving a speedup factor of around 23. For double precision,
the numbers read τSSE = 1.459 µs and τGPU = 0.090 µs, hence, a speedup factor of around 16.

6

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
4
4

The Neuberger-Dirac operator on the GPU Bjoern Walk

4. Conclusions and outlook

In this proceedings article, we gave a first introduction of our study of a GPU-based simu-
lation program for lattice QCD based on the Neuberger-Dirac operator. We introduced the basic
theoretical background and gave first performance results of our implementation of the Wilson-
Dirac operator and the Neuberger-Dirac operator. We have shown that the performance for the
Wilson-Dirac operator is of the same order of magnitude compared to other implementations pre-
viously published. For the Neuberger-Dirac operator, we have shown that we can reach a speedup
factor to the Wilson-Dirac operator of around 23 on single precision and 16 on double precision.
We are going to develop code for the calculation of the index of our Neuberger-Dirac operator via
zero-mode counting [7]. In the long run, we aim to integrate our code into a larger set of simulation
programs to calculate observables in the process K→ ππ in order to increase the lattice volume on
those calculations.

5. Acknowledgements

Part of the performance results were obtained on GPU of the KOMET collaboration of the
University of Mainz. We are indebted to the institute for these opportunity. B. W. is funded by the
DFG via GK 1581.

References

[1] M. A. Clark, PoS LATTICE2009 (2009) 003 [arXiv:0912.2268 [hep-lat]].

[2] G. I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi and K. K. Szabo, Comput. Phys. Commun.
177 (2007) 631.

[3] K. Barros, R. Babich, R. Brower, M. A. Clark and C. Rebbi, PoS LATTICE2008 (2008) 045.

[4] P. H. Ginsparg and K. G. Wilson, Phys. Rev. D 25 (1982) 2649; D. B. Kaplan, Nucl. Phys. Proc.
Suppl. 30 (1993) 597; R. Narayanan and H. Neuberger, Nucl. Phys. B 443, 305 (1995).

[5] M. K. Gaillard and B. W. Lee, Phys. Rev. Lett. 33, 108 (1974); G. Altarelli and L. Maiani, Phys. Lett.
B 52, 351 (1974).

[6] N. Cabibbo, G. Martinelli and R. Petronzio, Nucl. Phys. B 244, 381 (1984); R. C. Brower,
G. Maturana, M. Belen Gavela and R. Gupta, Phys. Rev. Lett. 53 (1984) 1318.

[7] P. Hernandez, M. Laine, C. Pena, E. Torro, J. Wennekers and H. Wittig, JHEP 0805, 043 (2008);
L. Giusti, P. Hernandez, M. Laine, C. Pena, J. Wennekers and H. Wittig, Phys. Rev. Lett. 98, 082003
(2007); L. Giusti, P. Hernandez, M. Laine, P. Weisz and H. Wittig, JHEP 0411 (2004) 016;
P. Hernandez and M. Laine, JHEP 0409 (2004) 018.

[8] NVIDIA, NVIDIA CUDA C Programming Guide.

[9] B. Bunk and R. Sommer, Comput. Phys. Commun. 40 (1986) 229.

[10] L. Giusti, C. Hoelbling, M. Lüscher and H. Wittig, Commput. Phys. Commun. 153 (1998) 31.

[11] H. Neuberger, Phys. Lett. B 417 (1998) 141; H. Neuberger, Phys. Lett. B 427 (1998) 353.

[12] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes, Third Edition.

[13] B. Bunk, K. Jansen, M. Lüscher, H. Simma, ALPHA collaboration internal report (1994);
T. Kalkreuther and H. Simma, Comput. Phys. Comm. 93 (1996) 33.

7

