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We model the electrons on a monolayer graphene in terms of the compact and non-compact U(1)

lattice gauge theories. The system is analyzed by the strong coupling expansion and is shown to

be an insulator due to dynamical gap formation in/around the strong coupling limit. This is similar

to the spontaneous chiral symmetry breaking in strong coupling gauge theories. The results from

the compact and non-compact formulations are compared up to the next-to-leading order of the

strong coupling expansion. Excitonic modes and their dispersion relations in the insulating phase

are also investigated: it is found that there arises a pseudo-Nambu–Goldstone mode obeying the

Gell-Mann–Oakes–Renner type formula.
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1. Introduction

After its first experimental discovery in 2004 [1], graphene (monoatomic layer material of
carbon atoms) has widely attracted theoretical and experimental attention [2]. Due to its hexagonal
lattice structure, charge carriers on a graphene reveal a linear dispersion relation around two “Dirac
points” in momentum space [3], so that quasiparticles at low energies can be described as two
species of massless Dirac fermions in (2+1)-dimensions [4]. The symmetry between two triangular
sublattices of graphene is referred to as the “chiral symmetry”.

In the low-energy effective theory of graphene, the effective Coulomb interaction between
charge carriers is enhanced by 300 times due to the small Fermi velocityvF . Such a strong Coulomb
interaction may turn a suspended graphene in the vacuum from semimetal to insulator by the for-
mation of a finite spectral gap of quasiparticles [5]. This mechanism is similar to the spontaneous
chiral symmetry breaking and associated fermion mass generation in quantum chromodynamics
(QCD). Various attempts have been made so far to study the gap formation in monolayer graphene
by using the Schwinger–Dyson equation [6, 7, 8], the 1/N expansion [9, 10, 11], the exact renor-
malization group [12], and the lattice Monte Carlo simulations [13, 14, 15, 16]. These works are
mainly focused on the critical region of semimetal-insulator transition or on the behavior for large
number of flavors.

In this work, we rather focus on the strong coupling region of the system and study the low-
energy effective theory discretized on a square lattice [18, 19]. By using the strong coupling expan-
sion of the compact and non-compact formulations of the gauge field, we study the gap formation
due to the spontaneous “chiral symmetry” breaking as well as the dispersion relations for collective
excitations. Typical energy scale of the emergent excitations are also estimated with the use of the
intrinsic length scale of the original honeycomb lattice.

2. Low-energy effective theory of graphene

2.1 Effective action in the continuum limit

With the annihilation operators of the electrons on the two triangular sublattices of graphene
(aσ andbσ ) near the two Dirac pointsK±, we can construct a 4-component spinor in the momentum
space,ψσ (p) ≡ (aσ (K+ +p),bσ (K+ +p),bσ (K− +p),aσ (K− +p))T . Hereσ =↑,↓ denotes the
original spin of the electrons. The Euclidean effective action for graphene is then written as [7, 10]

SE = ∑
σ

∫
dx(3) ψ̄σ (D[A]+m)ψσ +

1
2g2 ∑

j=1,2,3

∫
dx(4)(∂ jA4)2, (2.1)

where the Dirac operator readsD[A] = γ4(∂4 + iA4)+vF ∑i=1,2 γi∂i . This is analogous to the action
in “reduced QED” [20], in which the fermionψ in (2+1)-dimensions is interacting with the U(1)
gauge fieldA in (3+1)-dimensions. The Hermitianγ matrices obey the anticommutation relation
{γµ ,γν} = 2δµν . The gauge coupling constant is defined byg2 = 2e2/ε0(1+ ε), with the electric
chargee, the dielectric constant of vacuumε0, and the dielectric constant of substrateε. Due to the
small Fermi velocity of quasiparticles,vF = 3.02×10−3, one may adopt the “instantaneous approx-
imation” in which the spatial componentA is neglected. From the absence of thez-component in
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the Dirac operator, this model possesses a continuous global U(4) symmetry generated by 16 gen-
erators{1,γ3,γ5,γ3γ5}⊗{1, σ⃗}, which is the extension of the continuous U(1) charge symmetry
and the discreteZ2 sublattice exchange symmetry of the original honeycomb lattice. The explicit
chiral symmetry breaking term is represented by the massm in Eq.(2.1).

After performing the scale transformation in the temporal direction,x4 → x4/vF , A4 → vF A4,
the Dirac operator becomes independent ofvF . This scale transformation changes the massm into
the effective massm∗ = m/vF , while the Coulomb coupling strength is enhanced asg2

∗ = g2/vF

which is about 300 times larger than that of QED. Since the inverse effective coupling strengthβ =
1/g2

∗ is 0.0369 in the vacuum-suspended graphene, the expansion byβ (strong coupling expansion)
would work well.

2.2 Regularization on a square lattice

We discretize the low energy action Eq.(2.1) on a square lattice with a lattice spacinga. Since
the original honeycomb lattice has a lattice spacingaHc ∼ 1.4Å, we make an approximate iden-
tification, a ∼ aHc, so that we can carry out the strong coupling expansion. The quasiparticles in
monolayer graphene are described with a single staggered fermionχ, because its eight doublers
can be identified as 4(spinor components)× 2(spin) degrees of freedom. As a consequence, the
lattice action for fermions on graphene is written as [14]

SF = ∑
x(3)

[
1
2 ∑

µ=1,2,4

(
V+

µ (x)−V−
µ (x)

)
+m∗M(x)

]
(2.2)

with fermionic bilinearsM(x)= χ̄(x)χ(x),V+
µ (x)= ηµ(x)χ̄(x)Uµ(x)χ(x+ µ̂),V−

µ (x)= ηµ(x)χ̄(x+
µ̂)U†

µ(x)χ(x), whereµ = 1,2,4. The staggered phase factorsηµ corresponding to the Diracγ-
matrices areη4(x) = 1,η1(x) = (−1)x4,η2(x) = (−1)x4+x1. Uµ is the U(1) link variable, where the
temporal link is defined asU4(x) = exp[iθ(x)] (−π ≤ θ < π), while the spatial linksU1,2,3 are set
to unity as a result of the instantaneous approximation. In the staggered fermion formulation, the
global chiral symmetry U(4) shrinks to U(1)V ×U(1)A , with the ordinary U(1)V charge symmetry,
and the axial U(1)A symmetry generated byε(x) ≡ (−1)x1+x2+x4.

As for the pure gauge action, we consider two types of formulation. One is the compact
formulation which consists of plaquettes made of U(1) compact link variables:

S(C)
G = β ∑

x(4)
∑

j=1,2,3

[
1−Re

(
U4(x)U†

4 (x+ ĵ)
)]

. (2.3)

The other is the non-compact formulation with the gauge angleθ :

S(NC)
G =

β
2 ∑

x(4)
∑

j=1,2,3

[
θ(x)−θ(x+ ĵ)

]2
. (2.4)

The compact formulation has photon self-interactions which are absent in the non-compact formu-
lation and in the continuum theory.
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3. Strong coupling expansion

Expanding the partition functionZ by the inverse coupling strengthβ and integrating out the
link variables order by order, we obtain the effective actionSχ in terms of fermions [17]:

Z =
∫

[dχdχ̄ ][dθ ]

[
∞

∑
n=0

(−SG)n

n!
e−SF

]
=

∫
[dχdχ̄]e−Sχ . (3.1)

Since the link integration selects the terms in which the link variable cancel with its complex
conjugate, various 4-fermi interaction terms are induced as shown in Fig.1. With the compact
formulation, we obtain the leading order (LO) and the next-to-LO (NLO) effective action,S(0)

χ and

S(1)C
χ respectively, as

S(0)
χ = ∑

x(3)

[
1
2 ∑

j=1,2

(
V+

j (x)−V−
j (x)

)
+m∗M(x)

]
− 1

4 ∑
x(3)

M(x)M(x+ 4̂), (3.2)

S(1)C
χ =

β
8 ∑

x(3)
∑

j=1,2

[
V+

j (x)V−
j (x+ 4̂)+V−

j (x)V+
j (x+ 4̂)

]
. (3.3)

Since the pure gauge termSG vanishes in the strong coupling limit (β = 0), the compact formulation
and the non-compact one give the same result in the LO. In the NLO, the effective action from the
non-compact formulation,S(1)NC

χ , is twice that from the compact one,S(1)C
χ , so that observables of

the both formulations are related asONC(β ) = OC(2β ).

Figure 1: Induced four-fermion interaction in the strong coupling expansion. The open and filled circles
represent fermion fieldsχ andχ̄, respectively. (a) In the LO, the time-like links (red arrows) in the fermion
actionSF cancel with each other to leave a spatially local interaction. (b) In the NLO, the time-link links inSF

are canceled by the time-like links in a plaquetteSG (blue arrows) to leave a spatially non-local interaction.

In order to linearize the induced 4-fermi terms and to integrate out the fermions, we introduce
complex bosonic auxiliary fields by the Stratonovich–Hubbard transformation. As for the LO
4-fermi terms in Eq.(3.2), we introduce an auxiliary fieldφ(x) = φσ (x) + iε(x)φπ(x). Another
auxiliary field λ = λ1 + iλ2 is introduced to linearize the NLO terms in Eq.(3.3); the mean field
value ofλ is determined by requiring the stationary condition of the effective action. Then we
arrive at the LO and the NLO effective potential (free energy) written in terms ofφ as

F(0)
eff (φ) =

1
4
|φ |2− 1

2

∫
k

ln
[
G−1(k;φ)

]
, (3.4)

F(1)C
eff (φ) = −β

4 ∑
j=1,2

[∫
k

G(k;φ)sin2k j

]2

. (3.5)
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with the bosonic effective propagator defined asG−1(k;φ) ≡ |φ/2−m∗|2 + ∑ j=1,2sin2k j and the

momentum integration as
∫

k ≡ (2π)−2∫ π
−π dk1

∫ π
−π dk2. Fig.2 showsF(0)

eff in the chiral limit (m=
0): Its minimum corresponds to the chiral condensate (the order parameter of chiral symmetry
breaking)σ ≡ |⟨χ̄χ⟩| = |⟨φ⟩|, so that the spontaneous “chiral symmetry” breaking takes place in
the strong coupling limit. The effective mass of fermions readsMF = m+(vF /a)(σa2/2), from
the mass term of the effective action.

Figure 2: The free energy in the strong coupling limit,F(0)
eff (φ), in the lattice unit as a function of|φ |, in the

chiral limit (m= 0).

SinceF(1)
eff is an increasing function of|φ |, the chiral condensateσ drops asβ grows. In other

words, the chiral symmetry tends to be restored as the coupling strength becomes weaker. Up to
the linear terms inβ andm, we can calculateσ with the compact formulation as

σC(β ,m) ≃ (0.240−0.297β +0.0239ma)a−2, (3.6)

As we mentioned, the condensate in the non-compact formulation is simply obtained asσNC(β ) =
σC(2β ) up to NLO. The behavior thatσNC(β ) drops faster thanσC(β ) is consistent with the results
of the Monte Carlo simulation for the same lattice model [16]. Taking a−1 ≃ a−1

Hc
= 1.39 keV as

a typical cutoff scale of our system, we obtainσC(β ,m) ≃
[(

0.680−0.421β + 1.39 m
eV

)
keV

]2
. The

dynamical fermion mass is estimated from the value of the chiral condensate asMF ≃ (0.523−
0.623β ) eV +3.05m, which is much smaller than the momentum cutoff scaleEΛ ∼ πvF /a= 13eV
of the original honeycomb lattice as long as the bare massm is small enough.

4. Collective Excitations

Here we study the fluctuations of the order parameterφ(x) around the symmetry broken state
⟨φ⟩ = −σ : the phase fluctuation (“π-exciton”) corresponds toφπ(x) and the amplitude fluctuation
(“σ -exciton”) corresponds toφσ (x). Propagators of those modes,Dφσ ,π are derived from the second
derivative of the effective actionSeff[φ ] with respect to the corresponding fieldsφσ ,π . Their excita-
tion energies are obtained from the imaginary pole of the propagator,D−1

φσ ,π
(p = 0,ω = iMσ ,π/vF ) =

0.
As for theπ-exciton, we obtain a mass formula in the leading order ofm as

Mπ ≃ 2vF

a

√
m

MF(m= 0)
. (4.1)
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SinceMπ vanishes in the chiral limit (m = 0), this mode serves as a pseudo-Nambu–Goldstone
(NG) boson emerging from the spontaneous breaking of chiral symmetry. From the axial Ward–
Takahashi identity corresponding to the infinitesimal local chiral transformation, a simple relation
can be derived,(Fτ

π Mπ)2 = mσ , which is analogous to the Gell-Mann–Oakes–Renner relation for
the pion in QCD [21]. Here the temporal “pion decay constant”Fτ

π is defined by the matrix element,
⟨0|Jaxial

4 (0)|π(p)⟩ = 2Fτ
π pτ

π , with the axial currentJaxial
µ (x) ≡ i

2ε(x)
[
V−

µ (x)−V+
µ (x)

]
.

By solving the pole equation numerically, theσ -exciton is found to be a massive mode with
Mσ ≃ (1.30−0.47β )(vF /a)+ 22.6m. SinceMσ acquires a large value comparable to the cutoff
scaleEΛ, application of the low-energy effective theory in this channel is not quite justified.

5. Conclusion

We have investigated the behavior of monolayer graphene analytically in/around the limit of
strong Coulomb coupling, by means of the strong coupling expansion of U(1) lattice gauge theory.
As for the pure gauge action, we have compared the results from the compact and non-compact
formulations. In either case, we find that “chiral symmetry” (the sublattice exchange symmetry
in the original honeycomb lattice) is spontaneously broken in the strong coupling limit with equal
magnitude of the chiral condensate. As the coupling strength becomes weaker, chiral condensate
from the non-compact formulation drops faster than that from the compact one. These results up to
NLO in the strong coupling expansion agree qualitatively with the extrapolation of the numerical
results of the lattice Monte Carlo simulations.

We have also examined the collective excitations associated with the chiral symmetry break-
ing in our approach and have derived their dispersion relations. The phase fluctuation of the chiral
condensate, the “π-exciton”, behaves as a pseudo-NG boson, like the pion in QCD. Experimental
observation of such mode in vacuum-suspended graphene would be a good evidence for the spon-
taneous chiral symmetry breaking in the strong coupling regime. The amplitude fluctuation of the
chiral condensate, the “σ -exciton,” acquires a large mass comparable to the intrinsic cutoff scale
EΛ, so that it needs further investigation without the low-energy approximation.

There are several directions to be investigated in future: Behavior of the present model on a
square lattice at finite temperature and finite chemical potential still remains an open problem both
analytically and numerically. Formulating the strong coupling expansion on a honeycomb lattice
would be of great importance. Extension of our strong coupling approach to the analysis of bilayer
graphene, which has been attracting attentions recently [22], would be also of interest.
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