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1. Introduction

After its first experimental discovery in 2008][ graphene (monoatomic layer material of
carbon atoms) has widely attracted theoretical and experimental attéfjti@ug to its hexagonal
lattice structure, charge carriers on a graphene reveal a linear dispersion relation around two “Dirac
points” in momentum spac], so that quasiparticles at low energies can be described as two
species of massless Dirac fermions in (2+1)-dimensi@hshe symmetry between two triangular
sublattices of graphene is referred to as the “chiral symmetry”.

In the low-energy effective theory of graphene, the effective Coulomb interaction between
charge carriers is enhanced by 300 times due to the small Fermi vetoc®ych a strong Coulomb
interaction may turn a suspended graphene in the vacuum from semimetal to insulator by the for-
mation of a finite spectral gap of quasiparticlB [This mechanism is similar to the spontaneous
chiral symmetry breaking and associated fermion mass generation in quantum chromodynamics
(QCD). Various attempts have been made so far to study the gap formation in monolayer graphene
by using the Schwinger—Dyson equati@hlf, 8], the 1/N expansion[@, [13 [L], the exact renor-
malization group(IZ], and the lattice Monte Carlo simulatiod®3 [14, (15, [1§. These works are
mainly focused on the critical region of semimetal-insulator transition or on the behavior for large
number of flavors.

In this work, we rather focus on the strong coupling region of the system and study the low-
energy effective theory discretized on a square laffi8d19. By using the strong coupling expan-
sion of the compact and non-compact formulations of the gauge field, we study the gap formation
due to the spontaneous “chiral symmetry” breaking as well as the dispersion relations for collective
excitations. Typical energy scale of the emergent excitations are also estimated with the use of the
intrinsic length scale of the original honeycomb lattice.

2. Low-energy effective theory of graphene

2.1 Effective action in the continuum limit

With the annihilation operators of the electrons on the two triangular sublattices of graphene
(ag andbg) near the two Dirac points ., we can construct a 4-component spinor in the momentum
space s (p) = (ag(K 1 +p),bs (K +p),bg(K_+p),as(K_+p))'. Hereo =1, | denotes the
original spin of the electrons. The Euclidean effective action for graphene is then writi@fil8 [

_ 1
&= ;/dx@ Wo (DIA +m) o + 55 j_;ﬁ/dx(“)(ajm)z, 2.1)

where the Dirac operator reaB$A| = y4(04 +1A4) +V, 31, ¥ 0. This is analogous to the action
in “reduced QED” [0, in which the fermiony in (2+1)-dimensions is interacting with the U(1)
gauge fieldA in (3+1)-dimensions. The Hermitiammatrices obey the anticommutation relation
{Vu, W} = 28,,. The gauge coupling constant is definedgBy= 2€?/&,(1 + €), with the electric
chargeg, the dielectric constant of vacuugp, and the dielectric constant of substratdue to the
small Fermi velocity of quasiparticleg, = 3.02x 10~3, one may adopt the “instantaneous approx-
imation” in which the spatial componeAtis neglected. From the absence of theomponent in
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the Dirac operator, this model possesses a continuous global U(4) symmetry generated by 16 gen-
erators{1, 5, 5, 5¥5} ® {1, 5}, which is the extension of the continuous U(1) charge symmetry
and the discret&, sublattice exchange symmetry of the original honeycomb lattice. The explicit
chiral symmetry breaking term is represented by the maissEq.[2.]).

After performing the scale transformation in the temporal directi@ny Xa/V, As — V. As,
the Dirac operator becomes independent.ofThis scale transformation changes the nragsto
the effective massn, = m/v.., while the Coulomb coupling strength is enhancedyas- g?/v,
which is about 300 times larger than that of QED. Since the inverse effective coupling steagth
1/g? is 0.0369 in the vacuum-suspended graphene, the expansiifdtsong coupling expansion)
would work well.

2.2 Regularization on a square lattice

We discretize the low energy action ) on a square lattice with a lattice spaciagSince
the original honeycomb lattice has a lattice spaang~ 1.4A, we make an approximate iden-
tification, a ~ a,, so that we can carry out the strong coupling expansion. The quasiparticles in
monolayer graphene are described with a single staggered fepmibacause its eight doublers
can be identified as 4(spinor components®(spin) degrees of freedom. As a consequence, the
lattice action for fermions on graphene is written[24] [

& = X(Zg) [2 “:%274 (Vi (x) =V, (%)) + mM(x) (2.2)

with fermionic bilineardvi (x) = x (x) X (x),V, (X) = nu (X)X ) Up (X)X (X+ 1),V (X) = N (X) X (X+
[J)Uﬂ(x)x(x), whereu = 1,2,4. The staggered phase facteyg corresponding to the Dirag-
matrices are)a(x) = 1,n1(x) = (—1), n2(x) = (—1)“*. Uy, is the U(1) link variable, where the
temporal link is defined ads(x) = exp[iB(x)] (—m < 6 < m), while the spatial link&J; » 3 are set
to unity as a result of the instantaneous approximation. In the staggered fermion formulation, the
global chiral symmetry U(4) shrinks to(Wl)y x U(1)a, with the ordinary Y1)y charge symmetry,
and the axial Y1)a symmetry generated kg(x) = (—1)%txet*s,

As for the pure gauge action, we consider two types of formulation. One is the compact
formulation which consists of plaguettes made of U(1) compact link variables:

= 1—Re(Us(x)Uf(x+ D). (2.3)
5.3, o me(vaoulocr )]
The other is the non-compact formulation with the gauge aéigle

S zgz Y 1600-60x+ N2 (2.4)

x4 j=

The compact formulation has photon self-interactions which are absent in the non-compact formu-
lation and in the continuum theory.
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3. Strong coupling expansion

Expanding the partition functiod by the inverse coupling strengfhand integrating out the
link variables order by order, we obtain the effective acnn terms of fermionsI7:

c %)" s
Z= [[dxdx][d6
[1exaxii 1[;) e
Since the link integration selects the terms in which the link variable cancel with its complex
conjugate, various 4-fermi interaction terms are induced as shown {@l Filyith the compact
formulation, we obtain the leading order (LO) and the next-to-LO (NLO) effective aﬂ&nand
é(l)c respectively, as

- /[dxd)ﬂe*SX. 3.1)

)< |1 . B 1 )

sY = x% [21._2‘2(Vj (X) =V, (x))+rmM(x) —ZX(S)M(X)M(X+4), (3.2)

S = g;;z [VJ*(X)V,-‘ (x+4) +vj—(x)vj+(x+21)} : (3.3)
x@) =1,

Since the pure gauge tei®a vanishes in the strong coupling limf§ & 0), the compact formulation

and the non-compact one give the same result in the LO. In the NLO, the effective action from the
non-compact formulatior&g)NC, is twice that from the compact oné,l)c, so that observables of

the both formulations are related @'°(B) = ¢°(2B).

—_——

M(x+4) \/\ ) Vi(x+d)
M) (@O Vit

(@) (b)

Figure 1: Induced four-fermion interaction in the strong coupling expansion. The open and filled circles
represent fermion fieldg andy, respectively. (a) In the LO, the time-like links (red arrows) in the fermion
actionS:= cancel with each other to leave a spatially local interaction. (b) In the NLO, the time-link ligks in
are canceled by the time-like links in a plaquedte(blue arrows) to leave a spatially non-local interaction.

In order to linearize the induced 4-fermi terms and to integrate out the fermions, we introduce
complex bosonic auxiliary fields by the Stratonovich—Hubbard transformation. As for the LO
4-fermi terms in Eq.3), we introduce an auxiliary field(x) = @y (X) +ie(X)@(x). Another
auxiliary fieldA = Ay +iAs is introduced to linearize the NLO terms in E2J); the mean field
value of A is determined by requiring the stationary condition of the effective action. Then we
arrive at the LO and the NLO effective potential (free energy) written in terngsasf

Fog (@) = il(ﬂ!z—;/kln G k)], (3.4)

we,n_ B e
Far (@) = -2 2, {/kG(k,(p)smsz} . (3.5)
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with the bosonic effective propagator definedGis'(k; @) = |@/2— m*]2+ zjzlﬁzsinz k; and the
momentum integration af = (2r)~2 /" dky /", dk.. Figl showsFéf?) in the chiral limit (n=

0): Its minimum corresponds to the chiral condensate (the order parameter of chiral symmetry
breaking)o = |(xx)| = |{@)], so that the spontaneous “chiral symmetry” breaking takes place in
the strong coupling limit. The effective mass of fermions relsigs= m+ (v. /a)(ga?/2), from

the mass term of the effective action.
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Figure 2: The free energy in the strong coupling Iinﬁﬁf?)(fp), in the lattice unit as a function ¢§|, in the
chiral limit (m= 0).

SinceFe(f? is an increasing function afp|, the chiral condensate drops ag3 grows. In other
words, the chiral symmetry tends to be restored as the coupling strength becomes weaker. Up to
the linear terms ifB andm, we can calculate with the compact formulation as

o®(B,m) ~ (0.240— 0.2978 + 0.0239ma)a 2, (3.6)

As we mentioned, the condensate in the non-compact formulation is simply obtaia& @) =
0¢(2B) up to NLO. The behavior thatNC(B) drops faster thaa©(B) is consistent with the results
of the Monte Carlo simulation for the same lattice modd|[ Takinga ! ~ a;cl =1.39 keV as
a typical cutoff scale of our system, we obtaifi(8,m) ~ [(0.680— 0.4218 + 233M) keV]®, The
dynamical fermion mass is estimated from the value of the chiral condenskte as(0.523—
0.623B) eV +3.05m, which is much smaller than the momentum cutoff séle- nv. /a= 13eV
of the original honeycomb lattice as long as the bare maisssmall enough.

4. Collective Excitations

Here we study the fluctuations of the order paramete) around the symmetry broken state
(@) = —o: the phase fluctuation ft-exciton”) corresponds t@;(x) and the amplitude fluctuation
(* o-exciton”) corresponds t@, (x). Propagators of those mod&x,, . are derived from the second
derivative of the effective actiof[¢] with respect to the corresponding fielgls . Their excita-
tion energies are obtained from the imaginary pole of the propa@h&ggﬂ?rg(p =0,w=IiMg n/V;) =
0.

As for the r-exciton, we obtain a mass formula in the leading ordenafs

2v, m
My ~ a \| Me(m=0) (4.1)
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SinceMj; vanishes in the chiral limitri = 0), this mode serves as a pseudo-Nambu—Goldstone
(NG) boson emerging from the spontaneous breaking of chiral symmetry. From the axial Ward—
Takahashi identity corresponding to the infinitesimal local chiral transformation, a simple relation
can be derived(FM;)?> = mo, which is analogous to the Gell-Mann—Oakes—Renner relation for
the pion in QCDIE]]. Here the temporal “pion decay constaRf is defined by the matrix element,
(013291(0) | (p)) = 2F % p, with the axial curreng@@(x) = Le(x) [V, (x) =V, (X)].

By solving the pole equation numerically, tieexciton is found to be a massive mode with
My =~ (1.30— 0.47B)(v. /a) +22.6m. SinceM, acquires a large value comparable to the cutoff

scaleEx, application of the low-energy effective theory in this channel is not quite justified.

5. Conclusion

We have investigated the behavior of monolayer graphene analytically in/around the limit of
strong Coulomb coupling, by means of the strong coupling expansion of U(1) lattice gauge theory.
As for the pure gauge action, we have compared the results from the compact and non-compact
formulations. In either case, we find that “chiral symmetry” (the sublattice exchange symmetry
in the original honeycomb lattice) is spontaneously broken in the strong coupling limit with equal
magnitude of the chiral condensate. As the coupling strength becomes weaker, chiral condensate
from the non-compact formulation drops faster than that from the compact one. These results up to
NLO in the strong coupling expansion agree qualitatively with the extrapolation of the numerical
results of the lattice Monte Carlo simulations.

We have also examined the collective excitations associated with the chiral symmetry break-
ing in our approach and have derived their dispersion relations. The phase fluctuation of the chiral
condensate, thert-exciton”, behaves as a pseudo-NG boson, like the pion in QCD. Experimental
observation of such mode in vacuum-suspended graphene would be a good evidence for the spon-
taneous chiral symmetry breaking in the strong coupling regime. The amplitude fluctuation of the
chiral condensate, thes“exciton,” acquires a large mass comparable to the intrinsic cutoff scale
Ea, so that it needs further investigation without the low-energy approximation.

There are several directions to be investigated in future: Behavior of the present model on a
square lattice at finite temperature and finite chemical potential still remains an open problem both
analytically and numerically. Formulating the strong coupling expansion on a honeycomb lattice
would be of great importance. Extension of our strong coupling approach to the analysis of bilayer
graphene, which has been attracting attentions rec&f]yWould be also of interest.
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