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Supersymmetry (SUSY) and supersymmetric field theorieamiateresting topic for numerical
lattice simulations. Similar to the chiral symmetry thesealso no local realization of (interact-
ing) supersymmetry on the lattice. | briefly review the basiasons for the breaking of super-
symmetry. One attempt to solve the problem uses a GinspdspiWelation for supersymmetry.
However, apart from the free theory a solution of this relathas so far not been found. For su-
persymmetric Yang-Mills (SYM) theory a fine-tuning of therégluino mass is enough to arrive
at a supersymmetric continuum limit. The last part of thiskmontains a short status report of
recent SYM simulations.
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1. Introduction

Supersymmetric lattice simulations have been the subject of several regstigations. The
reason for this can be seen in the growing interest for possible extensidhe standard model.
A complete understanding of supersymmetric theories, as they are useddrettiensions, needs
non-perturbative methods. Supersymmetry transforms fermionic anchibgsarticles into each
other. As a consequence it predicts a pairing of bosonic and fermionés stad has nontrivial
commutation relations with the Poincare-symmetry of space-time.

The simplest examples for supersymmetric field theories are Wess-Zumindisnotleey
can be seen as the matter sector of the supersymmetric extensions of tteedstandel. The
continuum action of such a model has the following férm
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It consists of bosonic and fermionic kinetic terms and a Yukawa-type interaterm. The su-
persymmetry transforms the fielgsand ¢ into each other. Due the nontrivial interplay with the
Poincaré symmetry the transformations contain derivatives of the fielésvartation of the action
in the continuum is

55—~ [dt[W'(9)(aw) + YW (9)as] ¥~ [atar [yw'(4)] Do. (12)

On the lattice the equality (2) can be easily satisfied using periodic or opemaguconditions.
The violation of the first equality (1) is, however, unavoidable for a |tettice theory. It is due to
the breaking of the Leibniz rule on the lattice. This fact can be stated in terenblofGo theorem
for local lattice supersymmetry. A version of such a No-Go theorem wesepted in[J1]. As
shown in [], even stronger conditions for a local lattice action must belledifi The findings in
[B], that include also the results of a simulation with intact supersymmetry on ttiee|awill be
summarized in the next section. A No-Go theorem for a local realizationugdersymmetry seems
to be similar to the Nielson-Ninomiya theorei [3] for chiral symmetry. In this ¢hsesolution
was found in terms of a modified symmetry relation on the lattice. The S€dtion 3 &fdher
briefly comment on the current investigations of this approach. The lasio8§, consists of a
report of the simulations of a supersymmetric gauge theory. In this caseakeidable breaking
of supersymmetry can be controlled via fine tuning.

2. No-Go theorem for local lattice super symmetry

A simple form of a No-Go theorem for the Leibniz rule, and therefore feritlariance of the
lattice action can be found in terms of the following statement.

Lemma 1 (Simpleform of the No-Go theorem) For all lattice derivative operator§l,the Leibniz-
rule is violated,

Z Onm( fm@m) — fn z UnmQm — On z Onmfm # 0. (2.1)
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Note that this is true also for a nonlocal lattice derivative. It is theref@teanger restriction then
in [f].

1In this case the on-shell version of th& = 2 Wess-Zumino model in two dimensions.
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Already in the early days of lattice supersymmetry a generalization of thestization was
proposed in[J4], that circumvents this simple form of the No-Go theorengusimodification of
the product rule on the lattice. It leads, e. g., to the following relplacemert fwoduct of three
continuum fields on the lattice

| dw00° = 3 G 22)
I

However, the lattice action i][4] includes a nonlo€gk. The nonlocality ofCijx is indeed un-
avoidable to circumvent the simple form of the No-Go theorem. Furthern@keprojects one
of the interacting fields to its zero momentum part and can hence be conkatdyeas a trivial
solution. To exclude such kind of trivial solutions one has to require ditiadal condition for
a possible lattice action. The interaction should not be restricted to a only retdiseimber of
modes.

A realization that fullfills this condition has been proposedjn [5]. In contathe previously
mentioned approach it involves not only a nonlocal interaction term bubatemlocal SLAC type
derivative? This seems to be a severe violation of locality, but for a supersymmetric lattiogy/the
one can find no better solution. This can be stated in terms of the followingdNstaBement.

Lemma 2 (No-Go theorem) In order to get a nontrivial interacting supersymmetric lattice theory
one needs a nonlocal derivative operator and a nonlocal interaction.term

Besides the violation of the Leibniz rule a second source of the supersyynbneaiking on the
lattice must be mentioned. Due to the doubling problem in the fermionic sector arWilass
term must be added to the fermion action. If not consistently added also t@saib potential
this leads to a supersymmetry breaking. Note that the doubling problem calneadsvoided with
a nonlocal lattice action.

According to the No-Go theorem it is hence possible to realize a fully sypengtric theory
on the lattice, if one accepts a nonlocality of the action. A local continuum limitich & theory
can be proven to all orders of perturbation theory in Wess-Zumino mogdts three dimensions
[A]- To perform numerical simulations one has to seek for an efficielizegion of the nonlocal
interaction term on the lattice. This can be done by performing the complete simutatourier
space. Equivalently the nonlocal interaction term can be realized usimggFtransformations and
a local product on a larger lattice (cf] [2] for details). Figire 1 showesrésult for the supersym-
metric Ward-ldentities, that verify the intact supersymmetry on the lattice.

3. Solutionssimilar to the Ginsparg-Wilson relation

Considering the presented No-Go theorem, the problem of realizingssuperetry on the
lattice seems to be much similar to the one for chiral symmetry on the lattice. Theponding
No-Go theorem for local realizations of chiral symmetry is the Nielsen-Ninantfigorem. In case
of this symmetry a solution for a lattice realization was found in terms of the Gigapfdson re-
lation, a modified symmetry relation on the latti¢e [9]. The basic idea behind th@&@g\Vilson
relation is a blocking transformation (corresponding to a renormalizatiarpgtep) from the con-
tinuum to the lattice. In this way not only the action is mapped onto a (perfect) laititoen.

2For a definition of this derivative seH [6].
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The Ward-idenities of the full supersymmetric model
(m =10, g = 800, N = 15)
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Figure 1. The Ward-identities measured in supersymmetric quantushargcs using a model with com-
pletely realized supersymmetry on the lattice. A nonlodaAS derivative and a nonlocal interaction term
were used in the action. The figure shows for comparison aBsdard-identities of the unimproved and
improved SLAC model introduced ifi][8]. These models contaily the nonlocal SLAC derivative but no
nonlocal interaction term.

Also the symmetry transformations get a modification due to the symmetry breakingeith by
the regulator. In case of chiral symmetry the relevant part of the actionlysquadratic and a
solution for the modified symmetry transformation can be found easily. Inastnthe interesting
case of supersymmetry includes non-quadratic interaction terms. A modjfieahetry relation
can, nevertheless, be found, as presente[]n [10]. It is, howesst, to find an action, that is
invariant under it. The form of the modified symmetry leads generically topadyrnomial ac-
tions and involves possible nonlocal terms. This might not be unexpeciesl sirenormalization
group transformation generically generates operators of higher iortle fields and interactions
between distant lattice sites. In case of the Ginsparg-Wilson relation a sdioitiarattice action
invariant under the modified chiral symmetry was found, e. g., in terms ofvidndag operator. For
supersymmetry this problem remains unresolved.

A different way to ensure chiral symmetry on the lattice uses fine-tuningeopinameters
in the action. The number of parameters that must be fine tuned depends mrixthg of the
supersymmetry breaking terms with operators of equal or lower dimensased®n similar argu-
ments one can find that no fine tuning is needed for the Poincaré symmetoylgralfine tuning
of the mass parameter for the chiral symmefry [11]. A fine tuning of all reecgsparameters for
a Wess-Zumino model (in more than one dimension) seems currently impossibleevet, for
a supersymmetric Yang-Mills theory it was found that only one parametereidedefor the fine

tuning [12].

4. Supersymmetric Yang-Millstheory

The field content of the supersymmetrig/{= 1) Yang-Mills theory contains, besides the
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usual bosonic gauge fields (field stren§ly), the Majorana fermiod in the adjoint representa-
tion. Adding a gluino mass term the Lagrangian of the continuum theory hdslkheing form

L =Tr —%FWF“M%X,@A—%X/\ . 4.1)

Note that supersymmetry is only establishedhgt= 0. Low energy effective actions of the theory
have been constructed 15].

The lattice action proposed by Veneziano-Curci in seems, in comparisor joréfliiously
mentioned attempts, to be a rather “brute force” approach. It constits afsiiied gauge action
(gauge group SUNc)) and the common fermionic action with a Wilson tefm,

1 1~
A= BZ (l_ NCDUP> +§ Xzy)‘X(DW(nb))xyAy' (42)

It breaks the chiral symmetry and the supersymmetry of the model. Howsedetailed analysis
shows that both symmetries can be recovered with a fine-tuning of the lo@e massmg. The
chiral limit of the theory corresponds to the supersymmetric limit.

We applied this approach to perform numerical simulations using a PHMGthigoror the
gauge action (gauge group SU(2)) an additional tree-level Symanzilouament was used and
stout smeared links for the fermion action. We have considered lattice $i16%x0 32, 24 x 48,
and 32 x 64 lattice points. If one sets the Sommer scale of the theory to the usual QC® valu
(ro = 0.5fm) the lattice spacing is.09fm corresponding to a lattice volume ok 1.5— 2.3fm.
We have performed the fine tuning by an extrapolation to the chiral firttitvas confirmed that
the supersymmetric Ward identities would lead to the same extrapolated® pdthbugh we have
used anti-periodic boundary conditions for the fermions in time direction, tite fiolume effects,
including the supersymmetry breaking by the boundary conditions, seeenuioder control.

The proposed low energy effective action contains operators foinadj@sons (gluino-balls),
glueballs, and, since the fermions are in an adjoint representation, cochpperators formed
from gluon and gluino fields (gluino-glue-balls). It is a nontrivial task tcasee the correspond-
ing correlations on the lattice. All mesonic states contain disconnected cdiainibu We have
measured them with a stochastic estimator technique including, where nmgcassgparate deter-
mination of the contributions form the lowest eigenvalues. For the gluebakgpléeed variational
smearing methods, and the gluino-glue-ball correlation was measured veithiaration of Jacobi
and APE smearing.

The presence of Majorana fermions in the theory leads to additional difgu Instead of
the determinant the fermionic path integral corresponds to a Pfaffidh,of Up to a sign the
Pfaffian is the square root of the determinant. Hence one gets a sigarmrisithe theory, although
the determinant stays always positive. The signs are representedapmaach by positive and
negative reweighting factors.

The masses of the particles obtained from the correlation functions ase sinfigure[. The

3Up denotes the usual plaquette dbg the Dirac matrix including the gauge field, the Wilson term, and the mass
term ofmg.

4The mass of the connected part of thgA correlation vanishes at that point. It corresponds to the adjoint version
of a pion massrta_r) in a partially guenched framework

5The renormalized masses obtained form the chiral and the superssimkivard identities vanish at the same
point. Up toO(a) effects the breaking of the corresponding symmetry is determined bg thasses.



Lattice SUSY and the SYM simulations Georg Bergner

Spectrum of N=1 SU(2) Super-Yang-Mills theory on the lattice
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Figure 2: The masses of the particles obtained in our simulation oéymmetric (SU(2)) gauge theory
as a function of the adjoint pion mass. The blue symbols spoed to the values extrapolated to the chiral
limit. All masses are given in units of the Sommer saale

gluino-glue-ball operator FfF oA ]® should have an overlap with the lightest fermionic state of
the theory. If supersymmetry is not broken, it should be paired with bogamticles of the same
mass. We have obtained masses for the gluinoabéjl(operatorA A) anda-n’ (operatord ysA) as
well as the O glueball. However, all of these particles have a much smaller mass than the, gluin
when extrapolated to the chiral limit. This is in contradiction with the theoreticaigiiens since

it indicates a breaking of supersymmetry.

In our recent studies we have increased the valy@ tf approach a smaller lattice spacing
(around 006 fm). The first results of these simulations indicate that the gap betweeamgses of
the fermionic and bosonic masses is reduced towards the continuum limit. Eligutes still too
early to draw a conclusion from these preliminary data.

5. Conclusions

Supersymmetry on the lattice remains an interesting subject of theoreticdigatiess. It is
by now well understood that this symmetry can be realized only in a nonlasaition the lattice.
It has been shown irf []L6] that a nonlocal lattice gauge theory leads tolacabcontinuum limit.
However, in case of the Wess-Zumino modells a full supersymmetric theddgyiee correct local
continuum limit at least in lower dimensions.

In a local lattice theory it is necessary to control the breaking of superstry. The most
elegant way to control the breaking would be a Ginsparg-Wilson relatiosujpersymmetry. Al-
though itis possible to establish such an relation, it is hard to find a solution intéracting case.
Perhaps an approximation can lead to a useful lattice realizatipn [17].

6F,v (x) is replaced by the clover plaquette on the lattice, attl is the commutator of two gamma matrices.
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For the supersymmetric counterpart of a pure gauge theory the sopeedyy breaking can
be controlled with the same fine tuning as needed for the chiral symmetry. Qmmygla parameter
is used to arrive at a supersymmetric continuum limit. This theoretical preditioerified by
the supersymmetric Ward-ldentities. The investigation of the mass spectrtime tfieory still
demands further efforts. The first results at one lattice spacing sh@ap &aween the bosonic
and fermionic masses. This gap may, however, be due to the lattice artifacteamish in the
continuum limit.
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