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We have numerically evaluated the one-loop counterterms for the four-dimensional Wess-Zumino
model formulated on the lattice using Ginsparg-Wilson fermions of the overlap (Neuberger) va-
riety, together with an auxiliary fermion (plus superpartners), such that a lattice version of U(1)R

symmetry is exactly preserved in the limit of vanishing bare mass. We have confirmed previous
findings by other authors that at one loop there is no renormalization of the superpotential in
the lattice theory, but that there is a mismatch in the wavefunction renormalization of the aux-
iliary field. We studied the range of the Dirac operator that results when the auxiliary fermion
is integrated out, and showed that localization does occur, but that it is less pronounced than the
exponential localization of the overlap operator. We also presented preliminary simulation results
for this model, and outline a strategy for nonperturbative improvement of the lattice supercurrent
through measurements of supersymmetry Ward identities. Related to this, some benchmarks for
our graphics processing unit code were provided. Our simulation results found a nearly vanishing
vacuum expectation value for the auxiliary field, consistent with approximate supersymmetry at
weak coupling.
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Wess-Zumino Model Joel Giedt

1. Introduction

One would like to have a general method for studying strongly coupled supersymmetric field
theories with lattice techniques. This is because nonperturbative dynamics play an important role in
the theory of supersymmetry breaking and its transmission to the visible sector of particle physics.
In this proceedings we examine one such general method, which involves a fine-tuning of bare
lattice parameters, after having restricted the number of counterterms using lattice symmetries. At
the same time, we perform detailed numerical studies of a lattice formulation that was studied by
several groups a few years ago [1, 2, 3, 4, 5, 6]. We will highlight some interesting features of that
model and present some new results regarding locality of the lattice Dirac operator and the degree
of explicit supersymmetry breaking that occurs. This proceedings report touches on aspects that
are discussed in much more detail in our recent article [7].

1.1 Fine-tuning

Four-dimensional supersymmetric models on the lattice1 generically require fine-tuning of
counterterms. This is to be contrasted with lower dimensional theories where lattice symmetries
can eliminate the need for such fine-tuning; see [11] for further details. The one known four-
dimensional exception is pure N = 1 super-Yang-Mills using Ginparg-Wilson fermions; the do-
main wall variety has been the subject of past [14] and recent [15, 16, 17, 18, 10, 19] simulations.
Clearly we would like to go beyond pure N = 1 super-Yang-Mills. Recently it was proposed
[20] that an acceptable amount of fine-tuning could be efficiently performed using a multicanon-
ical Monte Carlo [21] simulation together with Ferrenberg-Swendsen reweighting [22, 23, 24] in
a large class of theories; see also [10]. In this approach it is necessary to design the multicanon-
ical reweighting function. We had suggested beginning at weak coupling on small lattices, using
the one-loop perturbative counterterms as initial conditions to an iterative search approach. The
present article reports numerical results for one-loop calculations in lattice perturbation theory that
are designed to locate this starting point. Ironically we find that for the lattice theory that is studied
here, the one-loop counterterms are entirely wavefunction renormalization, and that the logarith-
mically divergent parts match for the scalar and fermion. As a result, the initial condition for the
iterative search is equivalent to starting with the tree-level action, since it is just a rescaling of the
fields. This lends interest to our simulation results for the action with no fine-tuning, which we
report here.

1.2 The lattice theory

The theory that we study is the four-dimensional Wess-Zumino model, formulated on the lat-
tice with a variant of overlap (Neuberger) fermions [25]. The goal of the formulation is to impose
the Majorana condition and simultaneously preserve the chiral U(1)R symmetry [1, 2, 3, 4, 5, 6] that
is present in the continuum in the massless limit. As will be seen, preserving this symmetry greatly

1For reviews with extensive references see [8, 9, 10, 11, 12, 13].
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limits the number of counterterms that must be fine-tuned in order to obtain the supersymmetric
continuum limit. In addition to overlap fermions, the lattice formulation has auxiliary fermions
(plus superpartner fields) that couple to the overlap fermions through the Yukawa coupling, as in
[26]. It is possible to integrate out the auxiliary fermions (and superpartner fields), and when one
does this a nonanalytic Dirac operator results for the surviving fermionic field. Thus, as has been
discussed originally in [1], and at greater length in [2, 5] the action is singular once auxiliary fields
are integrated out. However, as we describe below, there is a sensible resolution of this singularity
by taking the theory to “live” inside a finite box, with antiperiodic boundary conditions in the time
direction for the fermions. The singularity of the Dirac operator that this resolves is related to non-
propagating modes in the infinite volume limit; the fact that these are nonpropagating was shown
in [6]. However, singularities in the Dirac operator raise the spectre of possible nonlocalities in the
continuum limit, as was found in gauge theories with the SLAC derivative [27]. By analogy to that
study, we have analyzed the continuum limit of the scalar self-energy and find that it is analytic in
p2, so that there is no sign of nonlocality. We have also measured the degree of localization of the
Dirac operator following the approach of [28]. We find that while there is localization, it is less
pronounced than the exponential localization of the overlap operator. In the process of discussing
our numerical perturbative results we are able to highlight the divergence structure of this theory,
which turns out to be strictly wave function renormalization at one-loop. The wave function renor-
malization of the fermion and the physical scalar match at one loop in the continuum limit of the
lattice expressions; but, the auxiliary scalar has a mismatched wave function counterterm. These
findings appeared previously in [1]; thus we confirm those results.

1.3 Summary of results

In [7] we began by discussing our perturbative results. We then reviewed correlation func-
tions and renormalization constants that must be measured in the simulations in order to fine-tune
the theory. These involve the renormalized supercurrent (the current is renormalized because the
symmetry is broken by the lattice regulator). We concluded with preliminary simulation results. In
particular, we have developed all of the components for simulations on graphics processing units.
Benchmarks that characterize the performance of our code were reported. We measured one bro-
ken Ward-Takahashi identity in a simulation and found it to be very small at weak coupling. We
argued that this is consistent with the nonrenormalization of the superpotential at one loop in lattice
perturbation theory.

2. Definitions

2.1 Continuum

The Euclidean continuum theory has action

S = −

∫

d4x
{

1
2 χTCMχ +φ ∗

�φ +F∗F +F∗(m∗φ ∗ +g∗φ ∗2)+F(mφ +gφ 2)

}

,

M = /∂ +(m+2gφ)P+ +(m∗ +2g∗φ ∗)P−. (2.1)
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2.2 Lattice

We next discuss the lattice action, which is a special case of the formulations of [1, 2]; we
write the lattice action in forms given in [4, 5, 6]. For this, a few lattice derivative operators must
be introduced.

A = 1−aDW , DW =
1
2γµ(∂ ∗

µ +∂µ)+
1
2a∂ ∗

µ ∂µ

D1 =
1
2γµ(∂ ∗

µ +∂µ)(A†A)−1/2

D2 =
1
a

[

1−
(

1+
1
2

a2∂ ∗
µ∂µ

)

(A†A)−1/2
]

D = D1 +D2 =
1
a

(

1−A(A†A)−1/2
)

(2.2)

where ∂µ and ∂ ∗
µ are the forward and backward difference operators respectively. Then the lattice

action is [5]:

S = −a4 ∑
x

{

1
2 χTCDχ +φ ∗D2

1φ +F∗F +FD2φ +F∗D2φ ∗

−
1
aXTCX −

2
a (FΦ+F

∗Φ∗)

+
1
2

χ̃TC
(

mP+ +m∗P− +2gφ̃P+ +2g∗φ̃ ∗P−
)

χ̃

+F̃∗(m∗φ̃ ∗ +g∗φ̃ ∗2)+ F̃(mφ̃ +gφ̃ 2)

}

(2.3)

Here, the tilded fields are the linear combinations

φ̃ = φ +Φ, χ̃ = χ +X , F̃ = F +F (2.4)

The fields Φ,X ,F and their conjugates are auxiliary fields introduced to allow for a lattice realiza-
tion of the chiral U(1)R symmetry in the m → 0 limit:

δ χ = iαγ5

(

1− a
2D

)

χ + iαγ5X , δX = iαγ5
a
2Dχ ,

δφ = −3iαφ + iα
[(

1− a
2D2

)

φ −
a
2F∗

]

+ iαΦ,

δΦ = −3iαΦ+ i a
2α (D2φ +F∗)

δF = 3iαF + iα
[(

1− a
2D2

)

F −
a
2D2

1φ ∗
]

+ iαF

δF = 3iαF + i a
2

α
(

D2F +D2
1φ ∗

)

(2.5)

which takes a particularly simple form on the tilded variables:

δ χ̃ = iαγ5χ̃ , δ φ̃ = −2iαφ̃ , δ F̃ = 4iα F̃ (2.6)
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As noted in [5], we can integrate out the auxiliary fields X ,Φ,F , treating the tilded fields as
constant, to obtain the lattice action:2

S = −a4 ∑
x

{

1
2 χ̃TCMχ̃ −

2
a φ̃ ∗D2φ̃ + F̃∗(1− a

2D2)
−1F̃

+F̃∗(m∗φ̃ ∗ +g∗φ̃ ∗2)+ F̃(mφ̃ +gφ̃ 2)

}

. (2.7)

This is the lattice action Eq. (2.14) of [4] with a notation that interchanges D1 ↔ D2, which is
equivalent to Eq. (2.22) of [2] for the k = 0 case, using the identities3

Γ5 = γ5(1−
a
2D), Γ2

5 = 1− a
2D2, D†D =

2
aD2. (2.8)

The fermion matrix is:

M = /D+mP+ +m∗P− +2gφ̃P+ +2g∗φ̃ ∗P−, /D = (1− a
2D2)

−1D1 (2.9)

Furthermore we can integrate out the auxiliary fields F̃, F̃∗ to obtain the action

S = a4 ∑
x

{

−
1
2 χ̃TCMχ̃ +

2
a φ̃ ∗D2φ̃ +(m∗φ̃ ∗ +g∗φ̃ ∗2)(1− a

2D2)(mφ̃ +gφ̃ 2)

}

(2.10)

This is the action that is used in our numerical simulations. Note that { /D,γ5} = 0. The theory
evades the Nielsen-Ninomiya theorem [29, 30] by using a Dirac operator that has singularities in the
Brillouin zone. However, the form (2.3) is exponentially local, because it uses the overlap operator.
Locality after integrating out auxiliary fields was studied in [7], finding that the localization is less
than exponential.

When fine-tuning of the lattice action is performed, we must invoke the most general lattice
action consistent with symmetries. Since we perform our simulations at m 6= 0, this is just the
action with all dimension ≤ 4 operators built out of the physical fields, φ̃ and χ̃ . We write it here
for reference:

S = a4 ∑
x

{

−
1
2 χ̃TC( /D+m1P+ +m∗

1P−)χ̃ +
2
a φ̃ ∗D2φ̃

+m2
2|φ̃ |2 +λ1|φ̃ |4 +

(

m2
3φ̃ 2 +g1φ̃ 3 +g2φ̃ φ̃ ∗2 +λ2φ̃ 4 +λ3φ̃ φ̃ ∗3 +h.c.

)

−χ̃TC(y1φ̃P+ + y∗1φ̃ ∗P−)χ̃ − χ̃TC(y2φ̃P− + y∗2φ̃ ∗P+)χ̃
}

(2.11)

A term linear in φ̃ has been eliminated by the redefinition φ̃ → φ̃ + c with c a constant. The
parameters m2

2 and λ1 are real and all other parameters are complex. Whereas in the supersymmetric
theory there are four real parameters, in the most general theory we have eighteen real parameters
to adjust. Holding m1 and y1 fixed, we have fourteen real parameters that must be adjusted to obtain

2Integrating out an auxiliary fermion to obtain the fermionic part of this action was previously noted in [2]. There
it was noted that this relates the fermionic action to the one of [26] by a singular field transformation.

3We thank A. Feo for explaining this point and providing us with a derivation of these relations.
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the supersymmetric limit. The counting can be alleviated somewhat by imposing CP invariance,
so that all parameters can be assumed real. Then we have a total of ten parameters. Holding two
fixed, we must tune the other eight to achieve the supersymmetric limit. Conducting a fine-tuning
in an eight-dimensional parameter space is a daunting task.

On the other hand in the limit m1 → 0 we can impose the U(1)R symmetry (2.6). This restricts
the action to

S = a4 ∑
x

{

−
1
2 χ̃TC /Dχ̃ +

2
a φ̃ ∗D2φ̃ +m2

2|φ̃ |2 +λ1|φ̃ |4

−χ̃TC(y1φ̃P+ + y∗1φ̃ ∗P−)χ̃
}

(2.12)

If we hold y1 fixed, then only m2
2 and λ1 must be fine-tuned. Conducting a search in a two-

dimensional parameter space, with both coming from bosonic terms, is manageable. The difficult
part is that we must extrapolate to the massless fermion limit. Another potential problem is that
we impose antiperiodic boundary conditions for the fermion in the time direction, but must impose
periodic boundary conditions for the scalar in order for the action to be single-valued on the cir-
cle in the time direction. This breaks supersymmetry explicitly by boundary conditions. At finite
mass this should be an effect that can be made arbitrarily small by taking the large volume limit.
However at vanishing mass, there will be long distance modes that will “feel” the breaking due to
boundary conditions.4 Thus it is important that we take T � 1/ma as m is sent to zero, where T is
the number of sites in the time direction.
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