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1. Introduction

Orientifold Planar Equivalence [1] is a powerful analytical tool that establishes the equality of
certain observables (among which, meson masses) in two classes of gaugetheories atN = ∞, N
being the number of colours. This equivalence is of particular interest when the two gauge theory
families it relates are SU(N) with Nf (anti)symmetric Dirac fermion flavours and SU(N) with Nf

Majorana flavours in the adjoint representation. In fact, this special case enables us to transcribe
SUSY results to QCD [2], provided that the latter is close (in the sense of the 1/N expansion) to its
large-N limit. Some issues related to the equivalence, like e.g. the size of the finiteN corrections,
mandate anab-initio calculation. A full dynamical calculation is expensive from a computational
point of view. In fact, the cost of the computation is brought almost entirely by the inversion of the
fermionic matrix, which for theories with two-index representation fermions requiresO(N4) oper-
ations. Before undertaking a full dynamical study, it is convenient to consider the quenched case
as a prototype example. Although for theories in two-index representationsthe quenched theory
and the dynamical theory do not coincide in the large-N limit, Orientifold Planar Equivalence still
holds in the quenched case, which then becomes a useful toy model to studytechniques that could
be used in the dynamical investigation. In this spirit, a first paper appearedin which the chiral
condensate was shown to coincide in the large-N limit of the adjoint, symmetric and antisymmet-
ric representations [3]. A crucial point in that work was the separation of the corrections in even
and odd powers of 1/N by combining the numerical results in the symmetric and antisymmetric
representations. As a result, a precise extrapolation to the large-N limit could be performed and
Orientifold Planar Equivalence was verified to a high degree of accuracy. Moreover, this technique
allowed a computation of corrections up toO(1/N3) in the (anti)symmetric representation while
still using a reasonably small value ofN. In this work, we will perform a similar study for the
quenched meson spectrum. First, we will show that there is a simple order by order relationship
between the coefficients in a large-N expansion of amplitudes in correlation functions and of spec-
tral masses in the symmetric and antisymmetric representations. Then, we shall use a simple chiral
ansatz to establish a relationship between the mass of the vector mesonmV and the mass of the
pseudoscalar mesonmPS at finiteN, for N ranging from two to six, in the adjoint, in the symmetric
and antisymmetric representations. Finally, using the analytical relationships between the correc-
tions, the chiral ansatz will be extrapolated to the large-N limit and Orientifold Planar Equivalence
proven to hold. The results we will present in this work have already appeared in [4], to which we
refer for a more detailed discussion.

2. Meson masses for two-index representation fermions in the 1/N expansion

We extract meson masses from the large distance exponential decay of themeson correlation
functions. For the fermion sources we use the Wilson formulation, in terms of which the Dirac
operator is given by

Dxy = (m+4r)δxy−Kxy , (2.1)

with m the bare quark mass and

Kxy = −
1
2

[(

r − γµ
)

R
[

Uµ(x)
]

δy,x+µ̂ +
(

r + γµ
)

R
[

U†
µ(y)

]

δy,x−µ̂
]

. (2.2)
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In the previous formulae,x andy are site indices and theγµ the DiracΓ matrices in Euclidean space.
R

[

Uµ(x)
]

is the link variable stemming fromx in the directionµ̂ expressed in the representationR.
In our case,Rcan be the adjoint (Adj), the two-index symmetric (S) or the two-index antisymmetric
(AS) representation. For the representationR, meson correlators take the form

CR
Γ1Γ2

(x,y) = rR

〈

trR

(

D−1
yx Γ†

1D−1
xy Γ2

)〉

YM
, (2.3)

where trR indicates the trace over the color indices in the representationR and Γ1 and Γ2 are
combinations ofΓ matrices associated with the quantum numbersJPC of the mesons. With the
choicerR = 1 for R= S/AS andrR = 1/2 for R= Adj, in the large-N limit we have the equality of
correlators in these three representations. The factorrR = 1/2 in the adjoint representation can be
understood considering that in our formulation we are always taking Diracflavours in the adjoint,
and one Dirac flavour is equivalent to two Majorana flavours.

The formal proof of the equality of the correlators can be sketched as follows. We start ex-
panding the correlators in Wilson loops:

1
N2CR

Γ1Γ2
(x,y) =

rR

N2 ∑
C⊃(x,y)

αC 〈 trRWC 〉 , (2.4)

C being a closed curve that contains bothx andy. The coefficientαC in (2.4) does not depend on
the representation. Writing explicitly the traces in two-index representations interms of the trace
of the fundamental representation yields

1
N2CS/AS

Γ1Γ2
(x,y) =

1
2 ∑

C⊃(x,y)

αC

〈[trWC ]2〉±〈tr[W2
C
]〉

N2 , (2.5)

1
N2CAdj

Γ1Γ2
(x,y) =

1
2 ∑

C⊃(x,y)

αC

〈| trWC |
2〉−1

N2 . (2.6)

Note that the factors of 1/2 in the two previous formulae have a different origin: for the S/AS, it
comes when expressing the trace in the two-index representations in terms ofthe group element
in the fundamental representation, while for the adjoint is the factorrR. At largeN, we can use
factorisation and neglect the subleading terms, obtaining

1
N2CS/AS

Γ1Γ2
(x,y) =

1
2 ∑

C⊃(x,y)

αC

〈trWC 〉〈trWC 〉

N2 , (2.7)

1
N2CAdj

Γ1Γ2
(x,y) =

1
2 ∑

C⊃(x,y)

αC

〈trWC 〉〈trW
†
C
〉

N2 . (2.8)

Finally, the equality

lim
N→∞

1
N2CS/AS

Γ1Γ2
(x,y) = lim

N→∞

1
N2CAdj

Γ1Γ2
(x,y) (2.9)

follows from charge conjugation invariance, which dictates〈trW†
C
〉 = 〈trWC 〉. This last step in

Yang-Mills theories does not present the conceptual issues discussedin [5, 6] for the dynamical
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case. The equality of the meson spectra in the three theories follows from theequality of the
correlators.

Correlators of mesons in the adjoint representation are expected to be expandable in a power
series of 1/N2. As for the other two representations, since in the symmetric and antisymmetric
representations the static sources introduce 1/N effects, there is no reason not to expect 1/N cor-
rections in the meson mass spectrum. Assuming that there is no accidental degeneracy at large-N
in the theory with fermions in the antisymmetric and in the symmetric1, the massesmR and the
amplitudesAR in correlators of fermion bilinears in these two representations can be shown to be
related by

A j
S(N) = A j

AS(−N) and mj
S(N) = mj

AS(−N) (2.10)

for statesj related by Orientifold Planar Equivalence. Order by order in a 1/N expansion, this
implies that even-power terms in 1/N in the symmetric and antisymmetric representation have the
same coefficient, while odd-power terms have opposite coefficients. This means that the combina-
tions

M j =
(

mj
S+mj

AS

)

/2 and µ j = N
(

mj
S−mj

AS

)

/2 (2.11)

have an expansion in powers of 1/N2.

3. Numerical results

We generated gauge configurations for values ofN ranging from two to six using the standard
Wilson action. Both the generation of the configurations and the analysis of the correlators in
two-index representations were performed using the purposely developed HiRep code [7]. The
technical details of the simulations have been given in [4]. Here we remark that we simulate at
the sameβ values as in Ref. [3], where the couplings were chosen so that the gauge theories at
variousN are at a common value of the lattice spacinga = 1/(5Tc), Tc being the deconfinement
temperature of the pure gauge system [8].

After extractingmV andmPS, we have determined the chiral limit value ofmV (denoted asmχ
V)

using the chiral ansatz

mV (mPS) = mχ
V +Bm2

PS . (3.1)

Our results and the corresponding fits are displayed in Figs. 1, 2 and 3 respectively for the adjoint,
symmetric and antisymmetric representations. We note that there is a well-definedhierarchy formV

at fixedmPS, with the symmetric mass being the highest and the antisymmetric being the lowest.
At fixed representation, the vector mass in the antisymmetric has the largest variation withN, while
there is little or no variation withN for the adjoint vector masses.

The large-N extrapolation has been performed for the quantitymχ
V,Ad j and for the quantities

Mχ
V andµχ

V (see Eqs. (2.11)) using in all cases only the leading term and the 1/N2 correction. The

1In Quantum Field Theory, degeneracies are due to a symmetry, and there is no symmetry that could generate
degeneracies in these theories.
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Figure 1: mV as a function ofm2
PS for the adjoint representation at the values ofN shown. The solid lines

are chiral fits to the data.
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Figure 2: mV as a function ofm2
PS for the symmetric representation at the values ofN shown. The solid

lines are chiral fits to the data.

quality of the fits is displayed in Fig. 4. The values ofmχ
V,S andmχ

V,AS as a function of 1/N are
obtained inverting Eqs. (2.11). Our results are:

mχ
V,Adj = 0.736(17)−

0.28(11)
N2 , (3.2)

mχ
V,S = 0.723(27)+

0.40(11)
N

−
1.02(32)

N2 +
0.3(1.2)

N3 , (3.3)

mχ
V,AS = 0.723(27)−

0.40(11)
N

−
1.02(32)

N2 −
0.3(1.2)

N3 . (3.4)

The equality of the large-N results for the three representations is a prediction of Orientifold Planar
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Figure 3: mV as a function ofm2
PS for the antisymmetric representation at the values ofN shown. The solid

lines are chiral fits to the data.
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Figure 4: Large-N extrapolation of the adjoint mass and of the combinationsM andµ , all in the chiral limit.

Equivalence. We remark that through the separations of corrections in even and odd powers of 1/N
in the symmetric and antisymmetric representation, we were able to get an handle on the size of
the corrections up toO(1/N3). Numerically, Orientifold Planar Equivalence can be verified for any
value ofmPS in the chiral region [4].

4. Conclusions

Our work should be regarded as an illustration of a possible strategy for anumerical proof
of Orientifold Planar Equivalence. We have shown that it is possible to combine the data in the
symmetric and antisymmetric representation for extracting precise values in the large-N limit from
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data at moderately small values ofN. The next step in this investigation is the simulation of the
dynamical theories.
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