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1. Introduction

Staggered fermions had long been perceived as disadvantaged edrp&vilson fermions
regarding the index theorem connection between (would-be) zeroswaodiegauge field topology.
For Wilson fermions, the would-be zero-modes can be identified as eigesnmath low-lying
real eigenvalues; these can be assigned chiralityaccording to the sign af sy, thereby de-
termining an integer-valued index which coincides with the topological chafrgjee background
lattice gauge field in accordance with the index theorem when the gauge fietd iso rough
[1, 2, 3]. It coincides with the index obtained from the exact chiral zeamles of the overlap Dirac
operator [4]. In contrast, for staggered fermions, no way to identifyvtwald-be zero-modes was
known. They appeared to be mixed in with the other low-lying modes (all hguingly imaginary
eigenvalues) [1, 5] and only separating out close to the continuum limitf6kemed that, away
from the continuum limit, the best one could have was a field-theoretic defimfitre staggered
fermion index [1]. The latter had the disadvantages of being non-intesggriring a renormaliza-
tion depending on the whole ensemble of lattice gauge fields, and being sigtiifiess capable
than the Wilson fermion index of maintaining the index theorem in rougher lbackds [1].

Recently the consensus viewpoint described above was found to beeictcoStaggered
fermions do have identifiable would-be zero-modes away from the comtitimit, with identifi-
able chiralities and integer-valued index satisfying the index theorem wiedattite gauge field
is not too rough [7]. The would-be zero-modes, chiralities and indesbeddentified in aspectral
flow approach based on a new hermitian version of the staggered Diradarpeaaalleling the
spectral flow approach to the index for usual Wilson fermions [2, 3].

Further developments along this line have led to a new version of overlapofes built from
staggered fermions in place of Wilson fermions [8]. The construction resetinarkable feature
of reducing the 4 fermion flavors described by the staggered fermion &v@¢l for the staggered
overlap fermion. It turns out that underlying this construction is a hew \Witgpe fermion, ob-
tained by adding a Wilson-type term to the staggered fermion, which givesesrad /a to 2 of
the flavors while leaving the remaining 2 flavors massless. Other Wilson-type &ge also pos-
sible; another one which reduces the flavors from 4 to 1 has subgdgbean proposed in [9].
Numerical investigations of the 2-flavor staggered overlap fermion heee teported in [10].

A posteriori, these results and constructions can superficially seem taitghtforward. But
a priori the odds were very much against any of this working out in alslensay. There were a
number of surprises and unexpected aspects, and these will be higthligtite present review.

2. Would-be zero-modes and index of the staggered Dirac operator

In the continuum setting, the spectral flow perspective on the index of ittae DperatoD
arises by considering the eigenvaly@gm)} of the hermitian operator

H(m) = y5(D —m) (2.1)

The spectral flow is defined as the net number of eigenvaleg of H(m) that cross the origin,
counted with signt depending on the slope of the crossingpds varied over some range. It can
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be shown that the spectral flow bif(m) comes entirely from eigenvalue crossingsrat 0 and
equals minus the index @.

In the lattice setting with Wilson fermions, the spectral flow perspective [B Based on the
hermitian lattice analogue of (2.1):

Hw (m) = y5(Dw — m) (2.2)

whereDy is the Wilson Dirac operator. The eigenvalue crossingshgfm) are in one-to-one
correspondence witreal eigenvalues oDy, and the index oDy, (obtained from the would-
be zero-modes, i.e. the eigenmodes with low-lying real eigenvalues) cesnaidh minus the
spectral flow of the low-lying eigenvalue crossingsHyf(m). Numerical results illustrating this
can be found, e.g., in [2]. An illustration in tlte=2 case is given in Fig.1 where the eigenvalues
of Hy(m) are plotted as functions of.

In the case of staggered fermions, the staggered Dirac op&ratsranti-hermitian and there-
fore all its eigenvalues are purely imaginary. Hence the identification ofdaloel zero modes and
index in the Wilson case does not carry over to the staggered case:atleen® real eigenval-
ues, and in fact the staggered analogue of (Z.2)Ds;t — m), is not even hermitian. The lack of
any obvious way to distinguish the would-be zero-modes from the othelyiag-eigenmodes of
Dg; gave rise to the consensus viewpoint that staggered fermions areatisagid in this regard
relative to Wilson fermions.

However, it turns out that there is an alternative spectral flow apprivathe staggered case
[7]. Note that in the continuum setting, instead of (2.1) one can just as welthe hermitian
operatorH (m) = iD — my; for the spectral flow perspective on the index. But now the staggered
analogue,

is also hermitian and so its spectral flow can be considered as well. [Hagsethe analogue of
¥s in the staggered formulation; it is hermitian and corresponds (&) discretization errors
to 5 ® 1 in the spimpflavor interpretation [11]. Sincéls(0) = iDg, the would-be zero-modes
of Dg; are able to be identified as the eigenmodes with eigenvaties= —iA (0) for which the
associated flow (m) crosses zero at a low-lying value wf Furthermore, the sign of the slope of
the crossing is minus the chirality of the would-be zero-mode, and hencedee i minus the
spectral flow ofHsi(m) coming from the crossings at low-lying valuesrof See [7] for the details
of this identification.

This way of identifying the would-be zero-modes§; from the low-lying eigenvalue cross-
ings of Hgt(m) relies on an implicit assumption, namely that there is a clear separation between
the low-lying and high-lying crossings. Actually, there is no a priori reasobelieve that this
assumption is true, even in smooth gauge field backgrounds or in the ficcede. In fact one
would expect that it is not true. The clear separation between low-lyiddpgyn-lying crossings in
the Wilson case (as seen in Fig.1) relies crucially on the propér:t.yl. But the staggered version
I's does not have this property. The eigenvalue§oare nott+1 but are distributed throughout
the interval[—1,1]. E.g. 0 is an eigenvalue & in the free field case; this can be seen from the
free field momentum representationld which is ], cog(py). In light of this one would expect
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that, even in the free field case, the eigenvalue crossing;h) will be an arbitrary mess with
no clear separation into low-lying and high-lying crossings.

The first and biggest surprise in all this — a miracle in fact — is that, cortivaypectations, the
spectral flow ofHs;(m) does have a clear separation between low-lying and high-lying eigenvalue
crossings, at least when the gauge field is not too rough. In fact indgkdiéld case there are no
high-lying crossings at all, cf. the bound (2.7) below. Fig.2 shows thetsgdlow in a moderately
roughened U(1) background with topological cha@e- 1 on a 2-dimensional lattice. Now there
are high-lying crossings, but they are clearly separated from the limg-ynes, so the would-be
zero-modes 0Dg, their chiralities, and index, can be unambiguously identified.

The absence of high-lying eigenvalue crossingsHatm) in the free field case can be seen
analytically as follows. A simple calculation bfs;(m)? in the free field momentum representation
gives

Hst(M)? = Zsinz(pu)+n12|_|co§(pv) (2.4)
0 v

Sets, = sin(py), ¢y = cogpy). Then, in the case of 2 spacetime dimensions, starting from

Hst(M)? = &+ S+ mP(1— ) (1— 3), we find

Hst(m)? = P+ (1—nP)(s{+55) +nPsisg > m? for 0<|m| <1 (2.5)
and

Ha(m)?=1+sig+ (M -1)(1-sf)(1-s) > 1 for [m>1 (2.6)

Note that both of these bounds are saturated. Identical bounds caariteddn thed = 4 case,
although the derivations are more complicated. Hence in the free fieldfoadmthd = 2 and
d = 4 dimensions (and probably also for higher dimensions), we have

nm?  for|m <1

Hat(M)free > {1 for |m| > 1 (2.7)

This bound has a generalization to the case of gauge fields satisfyinglais&bility condition”
on the plaquettes. It shows a separation between low-lying and high-igegwalue crossings for
Hst(m) when theg in the condition is sufficiently small — see [7] for details. Thus the situation is
analogous to the Wilson case where the admissibility condition guaranteepératsm between
low-lying and high-lying crossings for the hermitian Wilson operaigr(m) [12].

Comparing Fig.’s 1 and 2 we see that the form of the spectral floMs@) is very different
from the Wilson case, and the separation between the low-lying and highdyirssings is much
larger. However, this is not one of the surprises alluded to in the abdimatd¢ad, the surprise here
is that there is no surprise — the staggered spectral flow has the samadannthe Wilson case
once the correct interpretation of the hermitian staggered opéiaton) is identified. It turns out
that the parametan in the staggered case should be identified not with the corresponding
Hw (m) but with the Wilson parameterin the Wilson case. This will be explained further below;
see Fig.3.
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Since the staggered fermiondndimensions describe$/2 flavors, the index theorem in this
case should be indéRg) = 29/2(—1)9/2Q. This is confirmed by numerical results in smooth
enough backgrounds. E.g. in Fig.2 the two positive slope low-lying crgssintheQ = 1 back-
ground in 2 dimensions imply that the index-i® in accordance with the index theorem. The
eigenvalues oDyg; in this background correspond o= 0 in Fig.2. The would-be zero-modes of
Dg; can be identified as the two eigenmodes with the low-lying eigenvalues belorgihg two
eigenvalue flows that cross the origin.
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Figure 1: Eigenvalue flow oHy(m) in a Figure2: Eigenvalue flow oHgt(m) in the
Q=1 background on a 2-dim lattice. sameQ=1 background as Fig. 1.

3. Staggered overlap construction

In the Wilson case, the spectral flow perspective on the index leads to

indexDw) = —%Tr|_||_\|/\\:v((rrr:o))2 = indexDov) (3.1)

for any mp in the region between where the low-lying and high-lying eigenvalue crgsnh
Hw(m) occur (e.g.mp = 1/a) [3, 4]. HereDgyy = %(1+ yg\;%) is the overlap Dirac op-
erator [4]. The intimate connection between the Wilson index, the hermitiamtopéky (m) and
the overlap Dirac operator suggests there may exist a staggered vafrsimnoverlap Dirac op-
erator connected to the staggered index and staggered hermitian opkf@atordiscussed above.
But there is a problem: The connections and properties of the overlap @iexator in the Wilson
case rely crucially on the properv‘@ =1. (E.g. without it the GW relation would not hold and
Dov Would not have exact zero-modes.) Therefore the natural replategen' s is not possible
when constructing the overlap operator in the staggered caserﬁﬁea. Attempts to construct
different versions ofs in the staggered case which do satigfy= 1 invariably lead to unnatural,
problematic operators which violate either lattice rotation invariance or gauggance [13].

This “I'2 # 1 problem” initially appears insurmountable, but the second main surprise in all
this is that it does have a solution [8]. The theoretical idea behind the solstamfollows. In
the staggered setting there is a naturally arising operator which squares ittettiity, namely
Iss, acting on the staggered fermion fieldsygx (x) = (—1)™ M x(x). It has the spigflavor
interpretationys ® y, which is not what we want. But if the staggered overlap constructiorbean
set up such that the physical flavors are those with positive flavaadithiunderl ® s thenys ®
will be the same ag ® 1 on the physical flavors, and th€gs may be used for the role g in the
staggered overlap construction.
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In fact this can be achieved simply by replaciag— I'ss andHy — Hg; in the overlap formula
for Doy. The key observation is that in this construction we haygHsi(mp) = il 55Dt — Mol 550 5
andrl ssls has the spiflavor interpretatior(ys ® y5) (5 ® 1) = 1® ys up toO(a?) effects. Thus
the 2 fermion flavors with positive flavor-chirality get a negative mass fiiloen-mol ssl 5 term,
and hence become massless flavors of the staggered overlap fermitentheh2 flavors with
negative flavor-chirality get positive masses from this term and hermante heavy, decoupling
flavors of the staggered overlap fermion with massely/a, just like the "doubler” species in the
usual overlap fermion construction. Note that the eX@storedchiral symmetry{Ds;, 55} =0
of the staggered fermion hereby becomes an axaitavoredGW chiral symmetry{ Dsoy, 's5} =
aDsod 55D50v Of the resulting staggered overlap Dirac oper#&itgy,. Moreover, a staggered version

of the index relations (3.1) holds [7, 8}index(Ds;) = —%Tr\/”% — index(Ds,). The factors
st

multiplying indexDs;) reflects the reduction from 4 to 2 flavors in the staggered overlap fermion.
The interpretation of the staggered overlap fermion becomes more straigridiaf we change

the hermitian staggered operatoriBy(m) — ssDst — M5 = 's5(Dst — M550 5). As mentioned

in [8], this operator is closely related to, and has the same eigenvaluewspexdr the previous

operatoriDg; — ml's. Everything in the preceding continues to hold with this ndw(m). The

staggered overlap Dirac operator takes a more recognizable formhthibegn now be written as

1 1
Dsov= = (14 (Dst — Mol 55l 5) (3.2)
a< \/(Dst — Mol s51"5) T (Dst — mOF55F5))

From this we see that underlying the staggered overlap construction vg staggered version of
Wilson fermionswith the Dirac operator

DsW: Dst+Wst ; Wst = (1_ I_55r5)' (3-3)

r
a
The “Wilson term”Ws; decouples the negative flavor-chirality modes by giving them mags 2
while keeping the two positive flavor-chirality modes as the physical modescéDgy describes
two physical quark flavors on whidfs = I's5 up toO(a) effects. It has th& 55 hermiticity D;TW =
INssDswl 55. A 2-flavor overlap fermion can then be obtained by takihg, — m with m = %,
p € (0,2) as the kernel in the usual overlap construction. fer mp andp = 1 this is precisely
the 2-flavor staggered overlap Dirac operdidgg, obtained above in (3.2). But now we see that it
can be generalized to amye (0,2). Furthermore, the role of the parametay in the staggered
overlap construction is hereby clarified: it is analogous to the Wilson paeaunehe usual overlap
construction.

The general staggered overlap operator can also be expresBagl as%(lJr F5g%)
SW

whereHs is another hermitian staggered operator giveh by
Hsw(m) = I's5(Dsw — M) = M55Dst — M5+ (1 —m)Is5 (3.4)

This is the true analogue of the hermitian Wilson operatgfm) = y5(Dw — m), and its spectral
flow has a similar form (Fig.43. On the other hand, the spectral flow of the hermitian Wilson

IWe setr = 1 and use lattice units to get the second equality.

2In 2 dimensions the staggered Wilson fermion has one physical fladoome doubler whereas the usual Wilson
fermion has three doublers. This explains why there is one high-lyingneadiee crossing in Fig.4 and three high-lying
crossings in Fig.1.
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operator as a function of the Wilson parametewith fixed m= 1 (Fig.3), has a similar form to
the spectral flow of our previous hermitian staggered opekégdm) as a function om (Fig.2) as
anticipated®
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Figure 3: Eigenvalue flow oHy(m= 1) Figure 4: Eigenvalue flow ofHsw(m) in
as a function of the Wilson parameter the same& =1 background as Fig.s 1,2,3.

To summarize, three new lattice fermion formulations have been introduceytjestal ver-
sions of Wilson fermions, domain wall fermichand overlap fermions. Each of these is a new
alternative and competitor to the corresponding Wilson-based formulatishstaould be more
computationally efficient since the constructions start from staggereer rétan naive fermions.
However, the gain in efficiency is reduced because the staggered Wism” is less local; it in-
volvesl s which is a 4-link operator [10]. This reduction in efficiency may possiblaimeliorated
by smearing the links [9].
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