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Mixed action computations on fine dynamical lattices F. Bernardoni

1. Introduction

In this work we want to test the matching between Lattice QCD and ChPT in a special finite
volume regime in which the valence quarks have masses mv in the ε-regime (that is mvΣV . 1, but
LΛχ � 1 where Λχ is the cutoff of ChPT, Σ is the quark condensate, V = L3×T is the volume).
As discussed in [1], under these conditions slow pion modes dominate the path integral in the
effective theory, so the expansion in powers of M2

π/Λ2
χ ∼ p2/Λ2

χ breaks down and a new power-
counting has to be used. In particular the pion zero modes have to be treated non perturbatively.
Nevertheless, the low energy constants (LECs) that appear in the ChPT Lagrangian are unaffected
by finite size effects so that this regime provides a framework in which the LECs can be determined
with different systematics with respect to usual “infinite volume” studies.

Our aim is to use a mixed action approach, in which chiral symmetry is exactly preserved at the
level of valence quarks only. We consider overlap valence quarks on top of N f = 2 CLS ensembles,1

obtained from simulations with non-perturbatively O(a)-improved Wilson sea quarks. The use
of cheaper Wilson quarks allows us to consider rather small lattice spacings (a ∼ 0.08 f m) and
sufficiently large physical volumes (L ∼ 2 f m). We also take a Partially Quenched approximation
in which the sea quark masses ms stay in the p-regime, that is they satisfy msΣV � 1. A consistent
power counting for this regime was introduced in [2].

The use of overlap in the valence sector is clearly suitable to study low energy QCD phe-
nomenology, where the effects of spontaneous breaking of chiral symmetry are more visible. More-
over it allows us to define unambiguosly the topological charge ν through the index theorem. As a
first application we have matched the dependence of 〈ν2〉 on the sea quark mass to the prediction
of NLO ChPT in the mixed regime, that depends on the LECS: Σ and a combination of L6, L7 and
L8.

In the ε-regime at a fixed ν , the LO partition function of ChPT has been shown to be equiva-
lent to a random matrix theory (RMT) [3], where many analytical predictions can be obtained for
spectral quantities, such as the spectral density or the distribution of individual eigenvalues of the
Dirac operator. Here we show that ChPT in the mixed regime, up to NLO, can also be matched to
a RMT. The dependence on the sea quark mass of the parameter of the RMT can be extracted from
this matching and can be shown to depend on Σ and L6.

A detailed paper has been published recently [4], to which we refer for a more extensive
discussion.

2. Matching QCD in the mixed-regime with Random Matrix Theory

As argued in [2], the heavier p-regime sea quarks behave as decoupling particles that can be
integrated out. The dependence on ms can then be reabsorbed in the LECs. The matching to a RMT
requires the further integration out of the non-zero momentum modes in ChPT.

For a theory with N f quarks in the ε-regime the partition function of ChPT at fixed ν , Z ChPT
ν (M )

can be written at LO as:

Z ChPT
ν (M ) =

∫
dξ

∫
U(N f )

[dU0]det(U0)ν exp
(

ΣV
2

Tr
[
M (U0 +U†

0 )
])

e−
∫

d4xTr[∂µ ξ ∂µ ξ ] (2.1)

1https://twiki.cern.ch/twiki/bin/view/CLS/WebHome
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where M = δi jmi is the N f ×N f mass matrix, U0 and ξ parametrize respectively the non perturba-
tive zero modes and the perturbative non zero modes of the pions. In finite volume the momentum
is quantized and for sufficiently low energies the non zero modes can be decoupled, order by order
in the ε-expansion if the Pseudo-Goldstone masses M2

ab ≡
Σ(ma+mb)

F2 satisfy Mab� L−1. This leads
to the definition of a Zero Modes Chiral Theory (ZMChT) with partition functional

Z ZMChT
ν ,ε (M ) ∝

∫
U(N f )

[dU0]det(U0)ν exp
(

ΣV
2

Tr
[
M (U0 +U†

0 )
])

. (2.2)

In [3], it was shown that Z ZMChT
ν (M ) is equivalent to the partition functional of a Random Matrix

Theory (RMT) of matrices W of size N, that depends only on the number of flavours, N f , and the
corresponding mass parameters m̂, viz.

Z ZMChT
ν ,ε (M )' RMTN{N f , m̂} , (2.3)

and there must be an identification Nm̂i = miΣV ≡ µi. From this relation spectral correlation func-
tions of the Dirac operator can be related to the corresponding quantities computed in RMT. In
particular, if x is the k-th smallest eigenvalue of the matrix

√
W †W , the probability distribution

associated to the microscopic eigenvalue ζ = Nx, pν
k (ζ ;{µ}) can be calculated in RMT. Then also

the distribution of individual low-lying eigenvalues of the massless Dirac operator can be predicted
[5] from the equivalence Eq. (2.3) in terms of just one parameter, the chiral condensate Σ.

This relation has been tested in the quenched approximation [6], respectively in N f = 2 and
N f = 2+1 dynamical simulations in [7] and [8].

In the mixed regime with Nv ε-regime quarks (Mvv � L−1) and Ns p-regime quarks (L−1 ∼
Mss), at low energies all non-zero modes and also the zero modes of the heavier pions must be
integrated out. A ZMChT is obtained corresponding to N f = Nv flavours as opposed to the total
Nv +Ns that one would obtain if all the quarks were in the ε-regime.

At LO the ZMChT in the mixed-regime is simply ChPT without the heavy modes (the inte-
gration over them gives an irrelevant normalization factor):

ZZMChT
ν ,m

∣∣
LO ∝

∫
U(Nv)

[dU0](detU0)ν exp
(

ΣV
2

Tr
[
Mv

(
U0 +U†

0

)])
. (2.4)

where Mv is the mass matrix M projected to the valence sector. According to the eq. (2.3), this
partition function is then equivalent to an Nv RMT. In particular, it is important to stress that the
ZMChT has Nv flavours, while the full ChPT from which it is derived corresponds to N f = Nv +Ns

flavours. In particular, for Nv → 0, the ZMChT or RMT we expect to find is the quenched one,
while the couplings should be those of an N f = Ns theory.
The matching at NLO still does not modify the structure of the ZMChT theory. The dynamics
of heavy modes can be absorbed in the couplings appearing at LO in eq. (2.4), that is Σ. The
integrations over the perturbative modes result in a change Σ→ Σeff, which for degenerate quarks
and in the limit Nv→ 0, reads:

Σeff(ms) = Σ

{
1+

2msΣ

F4

[
β2

2
+

1
16π2 log(MρV 1/4)+32Lr

6(Mρ)− 1
16π2 log

(
msΣ

F2M2
ρ

)]

− β1

2F2V 1/2 −
2

F2 g1

(√
Σms

F2 ,L,T

)}
, (2.5)

3
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where Mρ = 770 MeV is the ρ meson mass, while the function g1(M,L,T ) expressing the volume
effects on the propagator and the βi are defined in [9]. In our case T/L = 2, β1 = 0.08360 and
β2 =−0.01295. The quenched limit of the zero-mode integral over U(Nv) is calculated in [10] and
matches quenched RMT (qRMT).
Comparing the eigenvalues computed numerically in this Partially Quenched setup with the pre-
dictions of qRMT, we can extract Σeff of eq. (2.5):

〈ζk〉νqRMT = Σeff(Mss)|Nv=0V 〈λk〉νQCD(Mss), 〈ζk〉νqRMT =
∫

ζ pν
k (ζ ;0)ζ . (2.6)

On the other hand, the prediction for the ratios 〈ζk〉νqRMT/〈ζl〉νqRMT is parameter-free and can be
compared directly with 〈λk〉νQCD/〈λl〉νQCD at any fixed Mss.

The distribution of topological charge is, on average, controlled by the sea quarks only. In the
case when Nv→ 0 and the Ns sea quarks are degenerate, we found:

〈ν2〉= msΣV
Ns

[
1− N2

s −1
Ns

(
Σms

8π2F4 log

(
2msΣ

F2M2
ρ

)
+g1(

√
2msΣ

F2 ,L,T )

)

+
32Σms

F4

(
Lr

8(Mρ)+NsLr
6(Mρ)+NsLr

7(Mρ)
)]

. (2.7)

This result agrees with [11] in infinite volume and with [12] in the p-regime. Note the appearance
of Lr

7(Mρ), for which no prediction has yet been obtained on the lattice.

3. Results on Dirac spectral observables

We have carried out our computations on the CLS lattices of size 48× 243 named D4, D5

and D6[13]. The configurations have been generated with non-perturbatively O(a)-improved Wil-
son fermions at β = 5.3 using the DD-HMC algorithm and saved configurations are separated
by 30 HMC trajectories of length τ = 0.5. The lattice spacing has been determined to be a =
0.0784(10) fm in [13], which implies that our lattices have physical size L' 1.88 fm and sea pion
masses of 426, 377 and 297 MeV, respectively. However, preliminary results from other determi-
nations (eg using the mass of the ω baryon) yield a' 0.070 fm [14]. We will consider both values
in our analysis.

On these configurations we have built the massless Neuberger-Dirac operator DN [15] with
the parameter s that governs the locality fixed to s = 0.4. We have computed ν using the index
theorem ν = n+− n− where n+ (n−) is the number of zero modes of DN with positive (negative)
chirality, and the 10 lowest eigenvalues γ of DN. Given that the γ appear in general in complex
conjugated pairs and lie on a circle in the complex plane γ = 1

a(1−eiφ ), we have used the projection
λ =
√

γγ∗ = 1
a

√
2(1− cosφ) to compare with RMT. Expectation values were computed at fixed

absolute value of the topological charge |ν |.
In Fig. 1 (left) we report the ratios 〈λk〉ν/〈λl〉ν normalized to the corresponding qRMT pre-

dictions, for |ν | = 0,1,2 and for several combinations k, l given at the bottom of the plot. This
allows to appreciate the precision and level of agreement with qRMT of each specific case. While
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Figure 1: Left: eigenvalue ratios at fixed |ν |, normalized to qRMT predictions, for the indices (k, l) =
(2,1),(3,1),(4,1),(3,2),(4,2),(4,3). Right: Σeff bare extracted from the matching in eq. (3.1), for k =
1,2,3,4 and |ν |= 0,1,2. The data for D4 have been shifted in the horizontal axis for better clarity.

the RMT prediction seems to work well for ratios not involving λ1, the ratios 〈λk〉/〈λ1〉 exhibit
somewhat more significant deviations.

In the spirit of the mixed-regime ChPT analysis, our data also allow to study the mass de-
pendence of the effective condensate, cf. eq. (2.5). The values of the bare effective condensate
extracted from the matching

Σeff(Mss) =
〈ζk〉νqRMT

V 〈λk〉νQCD
(3.1)

for k = 1,2,3,4 and |ν | = 0,1,2 are shown in Fig. 1 (right), where one can observe that, at fixed
value of the sea quark mass, Σeff does not depend on k and ν within the statistical precision (with
larger errors for k = 1). We average over k = 2,3,4 and |ν |= 0,1,2 and estimate systematic effects
by adding the values for k = 1 in the average.

4. Fits to NLO Chiral Perturbation Theory

On the basis of the evidence presented in the previous section, now we assume that the match-
ing to ChPT in the mixed-regime works in the range of masses and volumes we used, and try to
extract the low-energy couplings from the sea-quark mass dependence of the two quantities Σeff

and 〈ν2〉.
We first consider the topological charge distribution. The statistical error in this quantity is

fairly large, but it is encouraging to see that there is a very clear dependence on the sea quark mass
(see Fig. 2 left). We have fitted both to the full NLO formula in eq. (2.7), and to the linear LO
behaviour. In either case ms is taken to be the PCAC Wilson mass renormalized in the MS scheme
at 2 GeV. The results for D4 and D5 are taken from [16], while we have computed that of D6.

At NLO we fit for Σ and the combination
[
Lr

8 +2(Lr
6 +Lr

7)
]
(Mρ). The value of F is taken to be

90 MeV; the systematic uncertainty related to this choice is estimated by varying F by ±10 MeV.
In physical units we get for a = 0.078−0.070 fm:

Σ
MS(2 GeV) =

[
262(33)(4)

(34)(5) MeV
]3
−
[
287(35)(5)

(36)(7) MeV
]3

(4.1)

[Lr
8 +2(Lr

6 +Lr
7)] (Mρ) = 0.0018(30) − 0.0023(43) (4.2)
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Figure 2: Left: 〈ν2〉 versus the sea quark mass amMS
s (2GeV). The smaller errors are the statistical ones and

the largest include our estimate of autocorrelations. The dashed and solid lines correspond to the best LO
and NLO ChPT fits respectively (for a = 0.078 fm). Right: Σeffa3. The dashed and solid lines correspond to
the best fit for Σ and Lr

6(Mρ) at F = 90 MeV, taking the scale to be 0.070 fm and 0.078 fm respectively.

where the first error is coming out of the fit and the second is the effect of changing F . Since our
ensembles are not large enough to allow a precise estimate of the effect of autocorrelations, we
quote errors computed with a conservative approach [4].

Let us now turn to Σeff. In this case, the dependence on ms is expected starting at NLO in
ChPT. We perform a two-parameter NLO fit, where we fix F and fit for Σ and Lr

6(Mρ).
In order to obtain the scalar density renormalization factor in the MS scheme for the valence overlap
fermions we apply the matching condition(

ZMS
S

)−1
m
∣∣∣∣overlap

Mref
π

= mMS(2 GeV)
∣∣∣Wilson

Mref
π

(4.3)

at aMref = aMss. We obtain ZMS
S (2 GeV) = 1.84(10), where the error is dominated by the one in

aMvv, i.e. in the determination of the unitary point. Obviously, several checks need to be done to
ensure that this result is robust, such as checking the dependence on the reference pion mass, as
well as on the sea quark mass.

With this estimate for the renormalisation factor and fixing F = 90 MeV, the result we obtain
from the fit is, for a = 0.078−0.070 fm

Σ
MS(2 GeV) =

[
255(12)(1)

(13)(4) MeV
]3
−
[
280(13)(4)

(14)(5) MeV
]3

(4.4)

Lr
6(Mρ) = 0.0010(6) − 0.0015(10) , (4.5)

where the only systematic error that has been estimated is that associated to the change of F by
±10 MeV.
Although the fit is good (see Fig. 2 right), it would be desirable to have more sea quark masses and
smaller statistical errors to assess the systematics. Particularly useful would be to test the finite-size
scaling.

This value of Σ is consistent with the one obtained from the topological susceptibility above,
and both are in nice agreement with the alternative determination of [17], that extracted the con-
densate from the spectrum of the Wilson-Dirac operator on N f = 2 CLS configurations at the same

6
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lattice spacing and sea quark masses, but in a larger physical volume.

5. Conclusions

Using a mixed action approach, together with being in the mixed regime and in the PQ ap-
proximation has allowed us to match the Dirac low spectrum with the ChPT predictions with sig-
nificantly finer lattices than in previous studies. Our determination of Σ lies in the same ballpark
as many of these previous determinations. More work is however required to quantify the system-
atic uncertainties involved in this method: autocorrelations, systematics in the chiral fit and finite a.
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