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1. Introduction

The low-lying spectrum of the Dirac operator is a fascinating subject, which also contains
important physics. Recently, three of the present authors presented an analysis of the quenched
spectrum of the Wilson Dirac operatorDW [1]. Focus was on the low-lying real modes ofDW and
the Hermitian counterpartD5 = γ5(DW +m). Effects of the lattice spacinga were taken into account
to leading order. A chiral Random Matrix Theory that encapsulates these leading order terms was
then established. As the sizeN of the random matrices goes to infinity, a scaling regime is reached
where this chiral Random Matrix Theory coincides with what one obtains from the Wilson chiral
Lagrangian to leading order ina. This extends in a precise manner the universal Random Matrix
Theory results of continuum fermions [2, 3] to Wilson fermions in the microscopic scaling regime.
In particular, the appropriate definition of anε-regime [4] for the low-lying eigenvalues of the
Wilson Dirac operator is identified [1]. The corresponding spectrum away from the microscopic
limit was first analyzed at the mean field level by Sharpe in ref. [5]. The Letter [1] was very much
motivated by that work and a wish to understand in detail and at an analytical level some of the
results of the lattice simulations in ref. [6].

Here we report on a study of the effect of dynamical quarks on these results. Because the case
of two light flavors is significantly more difficult in terms ofcomputational complexity, we take
here the first step of unquenching by consideringN f = 1. This case is of interest in its own right
because there are no Goldstone bosons and hence no chiral Lagrangian at our disposal. Never-
theless, effective field theory can be used to describe in a precise way the leading-order effects of
Wilson terms in lattice gauge theory also in this case. By projecting onto sectors of a fixed num-
berν of real modes (counted with the sign of their chiralities, see below), we can also establish a
chiral Random Matrix Theory with exactly the same properties as the effective field theory in the
scaling limit. As for continuum fermions, the effective field theory in each fixed sector looks just
like the leading term in anε-regime counting of a chiral Lagrangian. Yet there are no Goldstone
bosons and hence no way to systematically introduce a full-fledged space-time dependent chiral
Lagrangian which could incorporate sub-leading effects ofan associatedε-expansion.

2. The effective field theory

Chiral symmetry for QCD with just one flavor is broken explicitly due to theU(1) anomaly,
and there are no Goldstone bosons. As a consequence, we do nothave the toolbox of chiral Pertur-
bation Theory available. Leutwyler and Smilga [4] faced a similar situation when dealing with the
spectrum of the continuum Dirac operator, and we will here follow the same line of reasoning. In
the continuum, the leading effect of a quark massm is proportional to the four-volumeV . Because
the logarithmic derivative yields the chiral condensateΣ, it follows that the partition function must
readZ ∼ exp[mΣV ]. This term corresponds tomψ̄ψ in the QCD Lagrangian. For Wilson fermions,
the Symanzik effective action has additional operators∼ a2(ψ̄ψ)2. Such terms give an additional
contribution to the free energy of ordera2 so that now

Z = exp
[

mΣV −2W8Va2] (2.1)

whereW8 is a so far unknown constant. We have chosen the parametrization so that this constant
is naturally positive (the factor of 2 is for later convenience). As argued in ref. [1] a positive sign
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of W8 is follows from from the Hermiticity properties ofDW . We define the appropriateε-regime
here by requiring that

m̂ ≡ mΣV and â2 ≡ a2W8V

remain fixed asV → ∞. This is the regime where there is competition betweenm anda2 effects
and one can imagine that a phase transition may occur. This turns out to be a transition to the
Aoki phase [7] (see also [8]). Other countings can also be considered [9], but they are not of direct
interest to us here.

In the continuum, a chiral rotationα shifts the vacuum angleθ → θ + α . Noting that the
a2-term in the effective action comes from operatorsa2(ψ̄ψ)2, we define

Z(θ) = exp
[

mcos(θ)ΣV −2W8Va2 cos(2θ)
]

, (2.2)

and its Fourier components read:

Zν ≡
∫ π

−π

dθ
2π

eiνθ exp
[

mcos(θ)ΣV −2W8Va2 cos(2θ)
]

(2.3)

Inverting this, we recover the original partition functionas a sum over eachZν after settingθ = 0:

Z(θ = 0) =
∞

∑
ν=−∞

Zν . (2.4)

Let us now look at eachZν separately. Interestingly,

Zν ≡

∫

U(1)
dU det(U)ν exp

[

1
2

mΣVTr[U +U−1]−W8Va2Tr[U2 +U−2]

]

. (2.5)

This looks exactly like the zero-momentum piece of the leading terms of aU(1) chiral Lagrangian
for Wilson fermions [10]. However, there are no Goldstone bosons, and theU(1) ’degree of free-
dom’ results from the angular integration variable of the Fourier transform.

For generalN f there would also be double-trace terms like(Tr[U +U−1])2 and(Tr[U −U−1])2,
but in thisU(1) case such terms just change the normalization ofW8 after use of elementary trigono-
metric identities.

3. Low-lying modes of the Wilson Dirac Operator

To get spectral information for the Wilson Dirac operator weneed either

* Pairs of extra species with opposite statistics (the graded method [12]) or

* Replicas [11, 2].

Here we use the graded method. We thus add a bosonic quark and acorresponding additional
fermionic quark, both with appropriate sources. When thesesources are set equal to each other, the
two additional determinants exactly cancel each other. In this limit, the partition function of this
graded theory therefore equals the partition function of QCD with the original one flavor.

The graded method can be used in the effective field theory as well. Additional Grassmann
integrations truncate and trivially converge, but care must be taken to ensure convergence of the
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bosonic integrations. This problem has been solved in the context ofcontinuum fermions in ref.
[12]. The graded partition function is

Z2|1(M̂ ,Ẑ ) =
∫

Gl(2|1)
dUSdet(U)νei 1

2STr(M̂ [U−U−1])+i 1
2STr(Ẑ [U+U−1])+â2STr(U2+U−2). (3.1)

The source terms are

M̂ =







m̂ f 0 0
0 m̂ 0
0 0 m̂′






Ẑ =







ẑ f 0 0
0 ẑ 0
0 0 ẑ′







and when ˆm = m̂′ and ẑ = ẑ′ a little miracle occurs: the graded partition function becomes equal
to the original partition function ofN f = 1. This follows from general principles, but it arises in a
highly non-trivial manner from the actual integrations of eq. (3.1). An explicit parametrization of
the graded matrixU has been provided in ref. [12]:

U =







eit+iu cos(θ) ieit+iφ sin(θ) 0
ieit−iφ sin(θ) eit−iu cos(θ) 0

0 0 es






exp







0 0 α1

0 0 α2

β1 β2 0







whereθ , t,u ∈ [−π,π] andφ ∈ [0,π]. The bosonic degree of freedoms is integrated over the real
line, and theα ’s andβ ’s are Grassmann variables.

A careful reader will have noticed the unusual form of (3.1).Before extending the theory to
the graded case, a rotationU → iU has been performed. In the originalU(1)-integral this simply
shifts the angular variable byπ/2, while still integrating it over the full circle. Doing such a rotation
prior to extending the action to the graded case correspondsto a particular path of integration for the
bosonic variables. It is the integration path used in eq. (3.1) which corresponds to a non-Hermitian
(but γ5-Hermitian) Wilson Dirac operatorDW .

The integrals in eq. (3.1) are tedious but doable. We have performed the Grassmann integra-
tions and one of the angular integrations explicitly. The resulting expressions will be published
elsewhere. Here we choose to present our results in a graphical manner.

While the Wilson Dirac Operator is not Hermitian, it is important that it nevertheless retains
γ5-Hermiticity: D†

W = γ5DW γ5. Indeed, it is this property that ensures Hermiticity ofD5. The
spectrum ofDW thus lies in the complex plane, each non-real eigenvalue being matched by its
complex conjugate partner. To compute the spectrum of the (non-Hermitian) Wilson Dirac operator
by analytical means is slightly cumbersome because of this.However,DW also has a certain number
of eigenvalues sitting on the real line. The distribution ofthe chiralities of the corresponding states
over the Dirac spectrum is much easier to compute. To this end, let us define a resolvent (and put
ẑ = ẑ′ = 0)

Σν(m̂ f ,m̂) ≡ lim
m̂′→m̂

∂
∂ m̂

lnZν
2|1(m̂ f ,m̂,m̂′). (3.2)

The discontinuity across the real line gives us the distribution of the chiralities over the Dirac
spectrum

ρν
χ (ζ̂ ) ≡ ∑

k,ζk∈R

δ (ζ̂ − ζ̂k) χk =
1
π

Im[Σν(m̂ f , ζ̂ )] (3.3)
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Figure 1: The density of chiralities of the Wilson Dirac operator.

with the chiralityχk = sign(〈k|γ5|k〉).
The integral over this distribution is normalized toν ,

∫ ∞

−∞
dζ̂ ρν

χ (ζ̂ ) = ν . (3.4)

The indexν counts chiralities of the real modes ofDW in Zν : ν = ∑n χn wheren runs over all real
modes. In the limit of smalla the probability of finding configurations with real modes that have
chiralities of different signs vanishes. In that limitν is simply the number of real modes. The non-
positivity of the density of real modes is unrelated to this:a change of sign occurs atζ̂ = m̂. Only
whenm̂ is on the order of or less than 8 ˆa2 does this have significance in the density since otherwise
the density is very small anyway. We show an example of the distribution of the chiralities over the
real modes in fig. 1.

We now wish to compute the spectrum of the Hermitian Wilson Dirac operatorD5 = γ5(DW +

m). To that end, introduce the new resolvent

Gν(ẑ,m̂) ≡ lim
ẑ′→ẑ

∂
∂ ẑ

lnZν
2|1(m̂,m̂,m̂,0, ẑ, ẑ′) =

〈

Tr

(

1
D5+ ẑ

)〉

(3.5)

and take the discontinuity across the real line. This gives us the spectral density ofD5:

ρν
5 (x̂) =

1
π

Im[Gν(x̂,m̂)]. (3.6)

Let us first consider the spectrum corresponding toν = 0. In fig. 2 we show the density
for fixed m̂ = 5 and various values of ˆa2. When â is small, a gap clearly opens up around±m̂,
as it should. The spectrum ofD5 then approaches the standard spectrum of the continuum Dirac
operator with one massive fermion [13], up to a trivial change of variables. In contrast to the
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Figure 2: Spectral density of the Hermitian Wilson Dirac operator forν = 0. (Dashed linesN f = 0.)

quenched spectrum, the microscopic spectrum ofD5 in this N f = 1 theory always has a zero at the
origin. This is clearly visible in fig. 2.

There are other differences with the quenched spectrum. Because of the real modes, the spec-
trum of D5 can change sign in theN f = 1 theory. A negative density simply corrersponds to a
theory with a sign problem: the Boltzmann weight in the path integral is not positive definite. The
existence of a negative density is thus a potential problem for numerical simulations. Fortunately
the sign problem in this theory is mild: it is only signifact in the small-m limit, and it can be post-
poned by going to smaller lattice spacingsa. We illustrate this phenomenon in fig. 3, where we
consider a case withν = 1. The analytical understanding we can provide here should be valuable
for numerical simulations.

4. Conclusions

We have presented an explicit computation of the microscopic eigenvalue distributions of the
Wilson Dirac operator, the real modes of this operator, and the eigenvalues of the Hermitian Wilson
Dirac operator. We have focused on effects that most clearlydistinguish a theory with dynamical
quarks from the quenched counterpart [1]. A sum over the index ν can be done straightforwardly.
This will be presented elsewhere.
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Figure 3: Same as fig.2, but now forν = 1. The spectral density is no longer positive.
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