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1. Introduction

Important properties of the QCD vacuum can be studied indirectly by loakitiie character-
istics of individual low-lying overlap fermion eigenmodes, which providetral way to filter out
UV fluctuations. The space-time chiral structure of the eigenmodes retthectpace-time topolog-
ical structure of the underlying gauge fields. Properties of dedistribution”[1], the probability
distribution of the local chiral-orientation parameter, stirred a debate [2}heér this offered evi-
dence in favor of, or against, models of the QCD vacuum. We revisited [Beduse of the local
chiral-orientation parameter and found that most of the qualitative featfiths distribution were
a kinematical effect which was removed with the use of an improved andugsoeasure of lo-
cal chirality. Here we flesh out the construction of the “absokrelistribution” and proceed to
analyze the striking change in its behavior as the energy scale of the eidesiisscanned [4].

2. Local Chirality and the X-Distribution

The local-chirality parameter measures the tendency of a low-lying Diraceigée, ) =
YL + Yr to be left or right handed. Sampling the space-time values of a particulaf sggen-
modes, say at a particular energy scale, for a set of configuratidds y#estatistical approximation
of) a base probability distributios?,(q1,02) whereq; = || andgz = |R|. A scatter plot of such
a distribution for a particular set of modes is shown in the left panel of EiquiWe can elucidate
the tendency for polarization by integrating over the radial coordimmtand investigating the de-
pendence on the polar angl, It is convenient to symmetrize the angular variable [0, 17/2]
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Figure 1: Left: Dynamics governing the polarization properties obtlowest modes for ensemblg
(defined in Table 1). Right: The associated “uncorrelatediainics; solid gray lines separate the quadrant
into 10 sectors, each containing 10% of the population dgsgr 7.

by defining the “reference polarization coordinate= %d) —1 so thatx € [-1,+1] and such that

a value ofx = +1 (x = —1) corresponds to purely right handed (left handed) bispinorsThjs,

in the literature [2], histograms which have a “double-peak,” that is twikpeaarx = +1 in a
distribution symmetric abowt= 0, have been interpreted (prematurely as we will see) as revealing
that the eigenmodes display chiral polarization. The amount of peakinge@anhanced with a
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different choice of “polarization function,” that is, using functionsxpfather tharx itself. These
polarization functions can be classified as belonging to one of sevendiefs, such as
Clv a . Ry -1 g, 4. 1.a
X-(xa)=sgnx) x| ; X"(t;a)= @y Xo(ta) = Etan t9 -1 (2.1)
wherea > 0 andt = tan(¢). X®(x; 1) = x= X©(t; 1) correspond to the original chiral orientation
parameter [1]. X&(t;2) and XR(t;2) are alternatives that appeared in the literature [2]. All of
these choices of polarization functions share the same crucial feafuhessimplest choice of the

reference polarization functidki(x) = x, namely they are odd, monotonically-increasing functions.
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Figure 2: PossibleX—distributions associated with fixed dynamics can haveitgtigkely different behavior.

Here we select two polarization functions from fami§ (left), and two from familyXR (right). In this and
subsequent figures, the data have error bars but they mayttm lsenall to be resolved.

The marginal distribution

P(X) = /0 i doy /O mdqz Po(A1,02) O (X—%(ql,qz)) (2.2)

whereX is a generic independent variable parametrizing the range of polarizatmtidns, i.e.

X € [-1,+1], is called the X—distribution” [1]. It depends not only on the dynamical base proba-
bility 2%,(q1,02) but also on the polarization functidf(x) used to measure it. As Fig. 2 indicates,
the qualitative features of thé—distributions depend very strongly on the choice of the polariza-
tion function, and one might be led into declaring, perhaps falsely, thatistrbdtion is highly
polarized or highly unpolarized depending on ones arbitrary choice.

Indeed, most of the qualitative appearance oKauwlistribution is a result of "kinematics" (or
"phase space") and is not due to QCD correlations at all [3]. To demmad@ghis, we compute
the X—distribution arising fromy (y) and r(y), wherey is the spacetime coordinate, and then
randomly reshuffle the field$i an(y) = WL (Yran), Wherey;an is @ random permutation, using an in-
dependent random reshuffle figr(y). Any QCD-dynamically-induced correlation betwegn(y)
and Yr(y) at sitey is destroyed by this procedure. Nevertheless, the correlated andreiated
scatter plots of the base probability distributions are very similar as is seen.it.FAgcordingly,
when we re-compute th¥—distribution, the randomized uncorrelat&edistribution looks very
similar to the original as seen in Fig. 3.

3. The AbsoluteX—Distribution

To expose the true correlation we need to "subtract”" the phase spaagrdiand, or more
precisely measure the (QCD-dynamically-generated) correlated distribndiative to the (ran-
domized) uncorrelated one.
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Figure 3: The referenc&—distribution for “lowest” and “highest” modes in ensemBblg(defined in Table 1)
is shown in the left panel. The associated distribution sttitistically independent left—right components
(“uncorrelated”) is shown in the right panel.

The following procedure makes a differential comparison of polarizatiothendynamics
(01, 0p) to that of uncorrelated probability distributia®y (g1, d2) = p(dz) p(dz), wherep(qr) =
f_*lldqze@b(ql,qz) is a marginal distribution: A ray that passes through the origin is specified by
its reference polarization coordinateas shown in Fig. 1. Determine the fraction of population
contained between thg-axis and this ray, separately for,(q1,02) and for 2y (q1,02). These
fractions are the cumulative probability functioBgx) = [*; dXP(X) andS'(x) = [, dX'Py(X).
Eliminatingx, every ray is represented by a point in the cumulative distribution pl8h& ) with
the set of all such points forming a curve starting(@t0) and ending at1,1). If the the two
dynamics in question have identical polarizations the graph will be a straight@n the left side
of Fig. 4 we plot the result of this construction for data displayed in Fig. e Gorrelated and
uncorrelated dynamics have very similar polarizations since the graph estcdxeing linear. To
obtain a differential comparison, and to better see the differences, mpute the slope of the
cumulative polarization graph and show it on the right side of Fig. 4. Ascameclearly see now,
the correlated dynamics exhibits a small excess of polarization with respibet tmcorrelated one
near the extremal values. This is a plot of the “absoKueistribution”

_1ds
- 2dg
except for the additional rescalirf — X = 2§' — 1 required sincX € [—1,+1] while the un-

correlated cumulative probabilitg' € [0,+1]. This construction is manifestly independent of the

Pa (3.1)
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Figure 4: Steps in the constructiosr; of absolutedistribution for data sﬁown in Fig. 1. See the discussion
in the text.
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choice for polarization coordinate, with different possibilities corresfimgto different parametric
representations of the same curve in (8¢ S ) plane.

Fig. 5 shows the absoluté-distributionPa(X) for the lowest two non-zero pairs (left panel)
and the highest two (of those measured) from enseilblglefined in Table 1). In comparison is
shown the uncorrelated—distribution,B"(x), constructed using the reference polarization coordi-
natex. The shape oPa(X) is determined by the correlation induced by QCD dynamics, while the
shape ofP"(x) is determined completely by the kinematics. From the gifX) andP"(x), one
could reconstruct the correlated (and uncorrelabeddlistributions forany choice of polarization
functionX(x), such as those chosen in [2].
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Figure 5: Absolute (dynamical) and uncorrelated (kinematic&hdistributions for gauge ensembie;
(defined in Table 1) using the reference polarization cowtd for the latter. Results for lowest two non—zero
pairs are shown on the left while the highest two pairs arevshan the right.

4. Convexity or Concavity of AbsoluteX—Distributions

Now we look at theX—distributions for the lowest and highest modes (of those measured low-
lying modes) for our finest (%3 ensemble&4). We have a total of four ensembles on lattices at
various lattice spacings, with fixed volume, and a fifth to check for finite-sfiexts. These are
listed in Table 1.

- . i i MAX  AAVE MIN AVE
Ensemble Size Neonig  Volume  Lattice Spacing AfYGw  Atdow Adice Maicu

E g4 100 (1.32fm)* 0.165fm 449 226 1956 1980
Ex 122 97  (L32fm)* 0.110fm 407 169 1711 1735
Es 16* 99  (1.32fm)* 0.0825fm 304 142 1513 1553
E4 24+ 96  (1.32fm)* 0.055fm 344 136 1338 1366
Es 16* 99  (L76fm)* 0.110fm 162 58 1087 1123

Table 1: The summary of five ensembles used in overlap eigenmodelatdms. The right side of the table
describes some properties of the spectra (in MeV) \mﬁ:ﬁ, denoting the average magnitude of lowest
near—zero eigenvalue over the ensemble Afi,, denoting the same for highest eigenvalddyyx is the
magnitude of the maximal lowest eigenvalue, mng the magnitude of the minimal highest eigenvalue.

Figure 3 (left panel) shows the (referen&ejdistribution for the lowest pair of eigenmodes and
for the highest pair (of the 55 measured). “Subtracting” from this theesponding{—distribution
for randomized data leaves the absolMtedistribution,Pa(X), shown Fig. 6. We see that much
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of the peaking in the referen¢é-distribution has been removed, by the comparison to the uncor-
related version. This indicates that most of the peaking was kinematicaf th#vedynamical in

the original reference distribution and that to draw any conclusions fnisrdistribution would be
misleading at best. On the other hand, for the absofut@istribution, any deviations from unifor-
mity are attributable to correlations induced by QCD dynamics. There is a ediasimall but clear
effect exhibited by the lowest modes which have a convex shape angjtiter modes which have

a concaveX—distribution. That is to say, the lowest modes exhibit an enhanced cbieization
while the higher modes exhibit a suppression, which we regard as aanuyé&hntalizing discovery.
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Figure 6: A plot of the absoluteX—distribution for the “lowest” (left panel) and “highesttight panel)
modes for our finest ensemble.

5. Chiral Polarization Scale

From Figs. 6 and 7 we see that the shape of the absilutistribution curve is qualita-
tively different for the lowest several modes (convex) versus highedes (concave). We seek
the scale\t at which the transition from convex to concave occurs. To do this wed@fhe, as
a figure of merit, a dynamical correlation coefficient in terms of the first mdroéthe absolute
X—distribution.

1
Ca(X) = —1+ 2L1dX]X|PA(X)

for which C5 > 0 for enhanced polarizatioa < 0 for suppressed polarization, a@g = O for
neutrality as for the case of statistical independence.

Fig. 8 (left panel) shows that the dynamical correlation coefficientedesas monotonically
from positive values at low modes to negative values at higher modes. & limerpolation de-
termines the scal@y, at which it crosses zero, at which point there is no dynamical tendency
enhancement or suppression of local chirality in comparison to the asssh¥iadistribution for
randomized, uncorrelated left-right components.

We repeated the determination of this scale for each of four lattice spacimgdento look
for a continuum limit. Fig. 8 (right panel) suggests tiat(V,a) has a finite continuum limit at
fixed volume. A fit to the fornc; + c,a*, with the coarsest lattice excluded from the fit, is drawn
to guide the eye. Further studies must address whether this “chiral @tlarizcale” survives
in the infinite-volume limit, but our check of the finite volume effect at a single latfzzcing is
encouraging.
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Figure 7: AbsoluteX—distributions for gauge ensemtiig with changing scalé\ of the modes. Note the
transition from convex to concave (positive to negativereation) between 470 MeV and 530 MeV.
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Figure 8: Left panel: Determination of the chiral polarization sgale, for the finest lattice. Right panel:
Dependence of the chiral polarization scdle (V,a) on the lattice spacing at finite volume.

6. Summary

X—distributions are detailed probes of QCD dynamics. The use of prevafirstibns in the
literature is misleading, since the distributions are dominated by kinematicatseffeis imperative
to use the absoluté—distribution as it removes kinematical effects leaving correlations induged b
QCD dynamics. We have discovered that the absofgistributions of the lowest several Dirac
eigenmodes are convex (polarized) and those of higher modes araveofanti-polarized). We
have determined the scafgr of the transition; its continuum limit is finite (at least for finite
volume) and, it is proposed, can define a "chiral polarization" scaleQid (Complete details are
in reference [4]. The absolubé—distribution was first discussed in [3].
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