
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
8
3

Staggered chiral perturbation theory in the
two-flavor case and SU(2) analysis of the MILC data

A. Bazavova, C. Bernardb, C. DeTarc, X. Du∗b, W. Freemana, Steven Gottliebd,e,
U.M. Heller f , J.E. Hetrickg, J. Laihoh, L. Levkovac, M.B. Oktayc, R. Sugari,
D. Toussainta, R.S. Van de Water j

aDepartment of Physics, University of Arizona, Tucson, AZ 85721, USA
bDepartment of Physics, Washington University, St. Louis, MO 63130, USA
cPhysics Department, University of Utah, Salt Lake City, UT 84112, USA
dDepartment of Physics, Indiana University, Bloomington, IN 47405, USA
eNational Center for Supercomputing Applications, University of Illinois, Urbana, IL 61801, USA
f American Physical Society, One Research Road, Ridge, NY 11961, USA
gPhysics Department, University of the Pacific, Stockton, CA 95211, USA
hSUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
iDepartment of Physics, University of California, Santa Barbara, CA 93106, USA
jDepartment of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA

E-mail: xiningdu@physics.wustl.edu

In the light pseudoscalar sector, we study rooted staggered chiral perturbation theory in the
two-flavor case. The pion mass and decay constant are calculated through NLO for a partially-
quenched theory. In the limit where the strange quark mass is large compared to the light quark
masses and the taste splittings, we show that the SU(2) staggered chiral theory emerges from the
SU(3) staggered chiral theory, as expected. Explicit relations between SU(2) and SU(3) low en-
ergy constants and taste-violating parameters are given. A brief summary of updated SU(2) chiral
fits to the MILC lattice data is presented.
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1. Introduction

Today most lattice QCD simulations are performed at unphysical light dynamical quark masses.
Chiral perturbation theory (χPT) [1, 2] has proved to be a very important tool for such simulations.
By using χPT, one can extrapolate physical quantities to physical light quark masses and get in-
formation on low energy constants (LECs) of the chiral theory. Although three-flavor χPT has
been successfully used for simulations with 2+1 dynamical quarks, we are still interested in the
two-flavor χPT for the following reasons: 1) Usually the simulated light quark masses are much
smaller than the simulated strange quark mass. We expect the SU(2) expansion to serve as a better
approximation and to converge faster than the SU(3) one. 2) Fits to SU(2) χPT can give us di-
rection information about LECs in the two-flavor theory. 3) By comparing results for SU(2) and
SU(3) fits, one can study the systematic errors from truncations of different versions of χPT.

In this work, we study the SU(2) χPT for staggered fermions in the partially-quenched case,
and obtain relations between SU(2) and SU(3) LECs by comparing formulae for the pion mass and
decay constant from SU(2) and SU(3) χPT. Then, we perform a systematic NNLO SU(2) chiral
analysis for recent MILC data in the light pseudoscalar sector. Results for the pion decay constant,
SU(2) LECs and chiral condensate in the two-flavor chiral limit are presented.

2. Rooted SU(2) staggered chiral perturbation theory

For lattice simulations based on the staggered fermion formalism, the correct effective theory
is rooted staggered χPT (rSχPT) [3, 4, 5, 6, 7], in which taste-violating effects at finite lattice
spacings are incorporated systematically. Physical quantities expressed in rSχPT become joint
expansions in both mq and a2, where a is the lattice spacing. The three-flavor rSχPT has been
well established [4] and successfully applied in analyzing the lattice data. Here we concentrate
on the two-flavor case. Instead of the three-flavor chiral limit mu = md = ms = 0, we perform the
expansion around the two-flavor chiral limit mu = md = 0,ms = mphys

s , where mphys
s is the physical

strange quark mass.
The SU(2) rSχPT can be constructed by following the same procedure used for SU(3) rSχPT [4]:

First, one writes down the Symanzik effective theory (SET) for staggered fermions. Second, one
maps the terms in the SET to operators in the chiral Lagrangian by using a spurion analysis. The
power counting rule depends on the specific version of staggered fermions being used. For asqtad
staggered fermions, we use [4, 8] a2δ ∼ 2Bm ∼ p2 where δ is a typical taste-splitting term.

At leading order (O(a2, p2,mq)), the chiral Lagrangian for SU(2) SχPT is

L
(4) =

f 2
(2)

8 Tr(DµΣDµΣ†)−
f 2
(2)

8 Tr(χΣ† + χΣ)

+
2m2

0
3 (U11

I + . . .+Unrnr
I +D11

I + . . .+Dnrnr
I )2 +a2

V ,

χ = 2µ(2)Diag(mxI, . . . ,mxI
︸ ︷︷ ︸

n′r

,myI, . . . ,myI
︸ ︷︷ ︸

n′r

,muI, . . . ,muI
︸ ︷︷ ︸

nr

,mdI, . . . ,mdI
︸ ︷︷ ︸

nr

), (2.1)

where Σ = exp(iΦ/ f ) and V is the LO taste-violating potential. Their definitions can be found
in Ref. [9]. In Eq. (2.1), the replica method is used explicitly: we take n′

r copies of each valence
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quark and nr copies of each sea quark. At the end of the calculations, we set n′
r = 0 to account for

partial-quenching, and nr = 1/4 for taking the fourth-root of the fermion determinant.

At NLO, the SχPT chiral Lagrangian contains two parts: the continuum terms at order O(p4, p2

mq,m2
q) and taste-violating terms at order O(p2a2,mqa2,a4). In the partially-quenched case, the

NLO continuum SU(2) chiral Lagrangian reads:

L
(6)

cont = −
l0
1
4 [Tr(DµΣ†DµΣ)]2 −

l0
2
4 Tr(DµΣ†DνΣ)Tr(DµΣ†DνΣ)

+ p0
3

(

Tr(DµΣ†DµΣDνΣ†DνΣ)−
1
2 [Tr(DµΣ†DµΣ)]2

)

+ p0
4

(

Tr(DµΣ†Dν ΣDµΣ†DνΣ)+2Tr(DµΣ†DµΣDνΣ†DνΣ)

−
1
2 [Tr(DµΣ†DµΣ)]2 −Tr(DµΣ†DνΣ)Tr(DµΣ†DνΣ)

)

−
l0
3 + l0

4
16 [Tr(χΣ† +Σχ†)]2 +

l0
4
8 Tr(DµΣ†DµΣ)Tr(χΣ† +Σχ†)

+
p0

1
16

(

Tr(DµΣ†DµΣ(χΣ† +Σχ†))−
1
2Tr(DµΣ†DµΣ)Tr(χΣ† +Σχ†)

)

+
p0

2
16

(

2Tr(Σ†χΣ†χ +Σχ†Σχ†)−Tr(χΣ† +Σχ†)2 −Tr(χΣ† −Σχ†)2
)

+
l0
7

16 [Tr(χΣ† −Σχ†)]2

− l0
5Tr(Σ†FRµν ΣFLµν)−

il0
6

2 Tr(FLµν DµΣ†DνΣ+FRµν DµΣDνΣ†), (2.2)

where l0
1–l0

7 are bare LECs in ordinary SU(2) χPT, and p0
1–p0

4 are four new (bare) LECs in SU(2)
PQχPT. Operators associated with p0

i are unphysical operators, in the sense that physical matrix
elements of these operators vanish in the limit where the valence quark masses are set equal to sea
quark masses. The specific form of the NLO taste-violating terms are not relevant to this work, so
we do not list them here. For more details, please see Ref. [10].

With the LO and NLO SU(2) SχPT Lagrangian, one can calculate the pion mass and pion
decay constant in the partially-quenched case. Throughout this work, we always assume that the
fourth-root procedure is legitimate [11, 8], and in practice it is done by setting nr = 1/4 at the end
of the calculations. The results are

m2
P+

5

(mx +my)
=µ(2)

{

1+
1

16π2 f 2
(2)

[

∑
j

R[2,1]
j ({M

[2]
XYI

})l(m2
j)

−2a2δ ′
V

(2) ∑
j

R[3,1]
j ({M

[3]
XYV

})l(m2
j)+(V ↔ A)+a2(L̃′′

(2) + L̃′
(2))

]

+
µ(2)

f 2
(2)

(4l3 + p1 +4p2)(mu +md)+
µ(2)

f 2
(2)

(−p1 −4p2)(mx +my)
}

, (2.3)
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fP+
5

= f(2)

{

1+
1

16π2 f 2
(2)

[

−
1
32 ∑

Q,B

l(m2
QB

)

+
1
4

(

l(m2
XI

)+ l(m2
YI

)+(m2
UI
−m2

XI
)l̃(m2

XI
)+(m2

UI
−m2

YI
)l̃(m2

YI
)
)

−
1
2

(

R[2,1]
XI

({M
[2]
XYI

})l(m2
XI

)+R[2,1]
YI

({M
[2]
XYI

})l(m2
YI

)
)

+
a2δ ′

V
(2)

2

(

R[2,1]
XV

({M
[2]
XV
})l̃(m2

XV
)+∑

j

D[2,1]
j,XV

({M
[2]
XV
})l(m2

j)

+(X ↔ Y )+2∑
j

R[3,1]
j ({M

[3]
XYV

})l(m2
j)

)

+(V ↔ A)

+a2(L̃′′
(2)− L̃′

(2))
]

+
µ(2)

2 f 2
(2)

(4l4 − p1)(mu +md)+
µ(2)

2 f 2
(2)

(p1)(mx +my)
}

. (2.4)

Here, δ ′
V

(2) and δ ′
A

(2) are LO taste-violating parameters, and L̃′′
(2) and L̃′

(2) are linear combinations
of NLO taste-violating parameters. Definitions for meson masses and residue functions R and D
can be found in Ref. [9]. All LECs in Eqs.(2.3) and (2.4) are one-loop renormalized.

In the limit where the light valence quark masses, light sea quark masses and taste-splittings
are all small compared to the strange quark mass, i.e., mx

ms
,

my

ms
, ml

ms
, a2∆B

µms
,

a2δ ′
V (A)

µms
∼ ε � 1, we expect

that SU(2) theory to be generated from the SU(3) theory [1]. This can be seen by expanding the
corresponding SU(3) formulae [4] for m2

π/(mx +my) and fπ in powers of ε . Indeed, one can check
that the expansion has the same pattern as the SU(2) formulae. Furthermore, one can relate SU(3)
and SU(2) LECs by comparing these two sets of formulae. First, by comparing LO meson masses
in various taste channels, we get the relations between LO taste-violating parameters

a2∆(2)
B = a2∆B, a2δ ′

V
(2)

= a2δ ′
V , a2δ ′

A
(2)

= a2δ ′
A. (2.5)

Then applying Eq. (2.5) in the NLO formulae of m2
π/(mx +my) and fπ , and comparing coefficients

of terms mx,my,ml and a2 separately, one obtains the following relations [9]:

f(2) = f (1− 1
16π2 f 2 µms log µms

Λ2 +
16L4

f 2 µms), (2.6)

µ(2) = µ(1− 1
48π2 f 2

4µms

3 log
4µms

3
Λ2 +

32(2L6 −L4)

f 2 µms), (2.7)

p1 = 16L5 −
1

16π2 (1+ log µms

Λ2 ), (2.8)

p2 = −8L8 +
1

16π2
1
6(log

4
3 µms

Λ2 )+
1

16π2
1
4(1+ log µms

Λ2 ), (2.9)

l3 = 8(2L6 −L4)+4(2L8 −L5)−
1

16π2
1
36(1+ log

4
3 µms

Λ2 ), (2.10)

l4 = 8L4 +4L5 −
1

16π2
1
4(1+ log µms

Λ2 ), (2.11)

L̃′′
(2) = L̃′′−

1
6∆I(1+ log

4
3 µms

Λ2 )−
1
2∆av(1+ log µms

Λ2 ), (2.12)

L̃′
(2) = L̃′−

1
6∆I(1+ log

4
3 µms

Λ2 )+
1
2∆av(1+ log µms

Λ2 ), (2.13)
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where L4,L5,L6 and L8 are renormalized SU(3) LECs, and L̃′′ and L̃′ are the NLO taste-violating
parameters in SU(3) rSχPT. Equations (2.10) and (2.11) are the same as the equations in the full
QCD continuum case [1]. Equations (2.8) and (2.9) relate the unphysical LECs in the partially-
quenched two-flavor theory to the physical LECs in the three-flavor theory. Equations (2.12) and
(2.13) give us relations between taste-violating parameters in the two-flavor and three-flavor theo-
ries.

3. SU(2) chiral analysis of the MILC data

Currently, we have gauge ensembles generated from 2+1 dynamical simulations using asqtad
staggered fermions. Lattice spacings range from 0.15fm to 0.045fm. The light pseudoscalar mass
and decay constant are measured with different combinations of valence and sea quark masses.
With these data, we perform a systematic NNLO SU(2) chiral analysis by using the NNLO for-
mulae for m2

π and fπ . Results of physical quantities are updated from the previous analysis in
Ref. [12].

The NNLO formulae for m2
π/(mx +my) and fπ are obtained by combining the NLO formulae

Eqs. (2.3) and (2.4), possible analytic NNLO terms and the continuum NNLO chiral logarithms
provided by Bijnens and Lähde [13]. The root mean square (RMS) average pion mass is used in
NNLO chiral logarithms. In order for the SU(2) formulae to apply, we require both the valence
and sea light quark masses to be significantly smaller than the strange quark mass. In practice, we
used the following cutoff on our data sets: ml ≤ 0.2ms,mx + my ≤ 0.5ms,max(mx,my) < 0.3ms.
Furthermore, in order for the continuum NNLO chiral logarithms to be applicable, we also require
the taste-splittings between different pion states to be significantly smaller than the kaon and pion
masses. The lattices that are at least close to satisfying these conditions are fine (a ≈ 0.09fm),
superfine (a ≈ 0.06fm) and ultrafine (a ≈ 0.045fm) lattices. In practice, we used superfine and
ultrafine lattices for our central value fit, and we included fits to all three kinds of lattices to estimate
systematic errors. One difference from the previous fit is that this time we used modified quark
masses m → m̃ = m + a2/(2µ) in NNLO analytic terms to make the NNLO LECs scale invariant
on the lattice, not just in the continuum.

4. Results

For the central fit, we used three superfine ensembles (aml,ams) = {(0.0018,0.018), (0.0025,

0.018), (0.0036,0.018)} and one ultrafine ensemble (aml,ams) = (0.0028,0.014). There are a
total of 50 data points and 30 parameters with appropriate constraints. This fit has a χ 2 of 18 with
20 degrees of freedom, giving a confidence level CL ≈ 0.6. The volume dependence at NLO has
been included in the fit formulae, and a small (≤ 0.3%) residual finite volume correction [14, 8] is
applied at the end of the calculations.

In Fig. 1, we show the fit results for the light pseudoscalar mass and decay constant as functions
of the sum of the quark masses (mx +my). The red solid curve represents the full NNLO results for
full QCD in the continuum case, where we have set the taste-splittings and taste-violating param-
eters to zero, extrapolated to a = 0 linearly in αsa2, and set valence and sea quark masses equal.
The continuum results through NLO and LO are shown in blue and magenta curves respectively.

Finally, we find the physical values of the average up and down quark mass m̂ by requir-
ing that π has its physical mass, and then find the decay constant corresponding to this point
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(a) (b)

Figure 1: SU(2) chiral fits to fπ (left) and m2
π/(mx +my) (right). Only points with the valence quark masses

equal (mx = my) are shown on the plots

in Fig. 1(a). With the scale r1 = 0.3133(23) fm determined by HPQCD [15], we obtain fπ =

130.2±1.4
(
+2.0
−1.6

)
MeV, where the first error is statistical and the second error is systematic. This

agrees with the PDG 2010 value fπ = 130.4± 0.2MeV [16]. Alternatively, one can fix the scale
by using the SU(3) NNLO result of fπ [17]. We then obtain

f2 = 123.8±1.4
(
+1.0
−3.7

)
MeV B2 = 2.91(5)(5)(14)MeV

l̄3 = 2.85±0.81
(
+0.37
−0.92

)
l̄4 = 3.98±0.32

(
+0.51
−0.28

)

m̂ = 3.19(4)(5)(16)MeV 〈ūu〉2 = −[281.5(3.4)
(
+2.0
−5.9

)
(4.0)MeV]3 (4.1)

The quark masses and chiral condensate are evaluated in the MS scheme at 2 GeV. We used the
two-loop perturbative renormalization factor [18] to do the conversion. Errors from perturbative
calculations are listed as the third errors in these quantities. All the quantities agree with SU(3)
results [17] within errors.

5. Discussion and outlook

In this work, we studied SU(2) rSχPT in the partially-quenched case, and we performed a
systematic SU(2) chiral analysis for recent asqtad data in the light pseudoscalar sector. Results
for SU(2) LECs, decay constant and chiral condensate in the chiral limit are in good agreement
with results from an SU(3) analysis [17]. It can be seen that the SU(2) theory within its applicable
region converges much faster than the SU(3) one. For the point x = 0.05 on the x-axis in Fig. 1,
the ratio of the NNLO correction to the result through NLO is 1% both for fπ and m2

π/(mx + my).
In contrast, the same ratio in SU(3) analysis is 3% for fπ and 15% for m2

π/(mx +my), respectively,
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although the large correction in the mass case is partly the result of an anomalously small NLO
term.

Since the simulated strange quark masses vary slightly between different ensembles, parame-
ters in SU(2) χPT should also change with ensembles. In this work, we also tried to include this
effect by using the adjustment formulae in Ref. [9]. It turns out that the fits are improved, but not
significantly. This part may still need further investigation, hence we do not include these results
in this work.

In the future, a next step is to include the kaon as a heavy particle in SU(2) SχPT in order to
study physics involving the strange quark, e.g., the kaon mass and decay constant. This method
has been used in Ref. [19]. Another step is to extend the analysis to data obtained from simulations
with HISQ fermions, where taste-violating effects are further reduced. This can be done using the
same approach as soon as the data are available.

We thank J. Bijnens for providing the FORTRAN code to calculate the NNLO partially-
quenched chiral logarithms.
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