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We present a Wilson type operator obtained by adding terms in both the Laplacian as well as the
first-derivative stencil, such that the resulting operator remains within a hypercube. Motivated by
the effect this improvement has on the eigenvalue spectrum, we carry out a preliminary study of
some important features of this operator, such as the approach to the continuum limit of several
physical quantities. Throughout we compare to the standard Wilson operator.
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1. Introduction

The basic operator design of fermion actions used in lattice QCD today, namely Wilson and
Susskind type, have changed little since they where first proposed during the seventies. A notable
exception are the so called perfect actions [1] which are designed to realize zero cut-off effects as
well as exact chiral symmetry, within the scope of the Ginsparg - Wilson relation [2]. Realizing
exact chiral symmetry, whether this is achieved using perfect actions or the overlap formulation [3],
comes at a huge cost in terms of computer time, usually around two orders of magnitude compared
to standard Wilson operators. A more modest approach proposes the modification of the Wilson
operator such that chiral symmetry breaking is reduced [4, 5, 6].

In this work we propose a simpler modification, free of tunable parameters, which has a some-
what different target in terms of the desired improvement. We design our operator by investigating
various discretizations for the Laplacian as well as the first derivative in the standard Wilson opera-
tor. Our choices are motivated by the eigenvalue spectra of these operators, as well as the reduction
achieved in rotational symmetry breaking. We test this operator by computing selected hadronic
observables, and comparing their approach to the continuum with standard Wilson.

2. Operator construction

The standard Wilson operator can be written as:

D(x,y) = ∑
µ

γµ∇
std
µ (x,y)− a

2
∆

std(x,y)+mδx,y. (2.1)

In the standard case, the first derivative term (∇std
µ ), which is forward-backward symmetric, is a 2-

point stencil for each direction µ , while the Laplacian (∆std) is a 9-point stencil in four dimensions.
In our approach we add adjacent terms in each positive or negative direction to both operators. Each
of the two operators will be at most a 3d term stencil, d being the number of dimensions. For the
off-axis terms, we add all shortest paths of links and then back project to the gauge group.

We will introduce our approach for the simpler case of d=2, and later generalize to d=4 dimen-
sions. In two dimensions, for the case of the Laplacian, we can define the two stencils:

∆std =

0 1 0
1 -4 1
0 1 0

/1, a2∆̂std(k1,k2) = 2cos(k1)+2cos(k2)−4

∆til =
1 0 1
0 -4 0
1 0 1

/2, a2∆̂til(k1,k2) = 2cos(k1)cos(k2)−2

(2.2)
which we name the standard and tilted Laplacians respectively. In Eq. (2.2) we additionally show
the corresponding operators in Fourier space. By taking the linear combination α∆std+(1−α)∆til

we can choose α such that the resulting Laplacian has certain desirable properties. Two such
choices of α are most notable, namely α = 1/2 and α = 2/3. The choice α = 1/2 will be referred
to as the Brillouin Laplacian, and is notable for the fact that it takes on a constant value on the entire
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boundary of the Brillouin zone. The choice α = 2/3 will be referred to as the Isotropic Laplacian,
and has the property that in Fourier space, for small momenta, it depends only on the combination
k2

1 + k2
2 up to and including O(a4). In other words, deviation from the continuum is isotropic, i.e.

it is the same whether on- or off-axis, for small momenta, up to this order. The stencils as well as
their Fourier space representations are given below:

∆bri =
1 2 1
2 -12 2
1 2 1

/4, a2∆̂bri(k1,k2) = 4cos2(k1/2)cos2(k2/2)−4

∆iso =

1 4 1
4 -20 4
1 4 1

/6, a2∆̂iso(k1,k2) = [2cos(k1)cos(k2)+4cos(k1)+4cos(k2)−10]/3

(2.3)
Similarly, one can define Brillouin and Isotropic stencils for the case of the first derivative. The
stencils corresponding to a single direction, along with their expressions in Fourier space, are given
below:

∇bri
x =

-1 0 1
-2 0 2
-1 0 1

/8, a∇̂bri
x̂ = isin(k1)[cos(k2)+1]/2

∇iso
x =

-1 0 1
-4 0 4
-1 0 1

/12, a∇̂iso
x̂ = isin(k1)[cos(k2)+2]/3

(2.4)

We construct our improved operators by taking combinations between these choices of first
derivatives and Laplacians. We investigate the eigenvalue spectra to qualitatively identify the fea-
tures of each combination. In Fig. 1 we show the spectra for all combinations of Laplacian and first
derivative when considering the three discretizations (Standard, Brillouin and Isotropic) for each
operator.

Our final choice is to use the Isotropic first derivative in combination with the Brillouin Lapla-
cian. We are motivated to choose this specific combination since we expect a reduction in the
condition number of the operator when compared to standard Wilson, mainly due to the fact that
the Brillouin Laplacian lifts the doublers by the same amount. This is particularly important when
the operator is used as a kernel for the overlap operator. In addition we expect less rotational
symmetry violation as compared to the standard Wilson operator.

Generalizing the above to four dimensions is beyond the purpose of this proceedings con-
tribution. However, in Eq. (2.5) we present the stencils of the Isotropic derivative and Brillouin
Laplacian, which we will use throughout this contribution, and hereafter refer to as the Brillouin
improved operator. In Fig. 2 we compare the eigenvalue spectra of the Brillouin improved operator
with that of standard Wilson on U(1) backgrounds, in two dimensions as well as four dimensions.
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Figure 1: Eigenvalue spectra of the fermion operator for all combinations of first derivative and Laplacian discretiza-
tions. The spectra where obtained on a 16×16 U(1) gauge field, using clover improvement with csw = 1. The framed
spectrum corresponds to our choice, to which we refer to as the Brillouin operator.

∇iso
x =

-1 0 1
-4 0 4
-1 0 1

-4 0 4
-16 0 16
-4 0 4

-1 0 1
-4 0 4
-1 0 1

-4 0 4
-16 0 16
-4 0 4

-16 0 16
-64 0 64
-16 0 16

-4 0 4
-16 0 16
-4 0 4

/432

-1 0 1
-4 0 4
-1 0 1

-4 0 4
-16 0 16
-4 0 4

-1 0 1
-4 0 4
-1 0 1

∆bri =
1 2 1
2 4 2
1 2 1

2 4 2
4 8 4
2 4 2

1 2 1
2 4 2
1 2 1

2 4 2
4 8 4
2 4 2

4 8 4
8 -240 8
4 8 4

2 4 2
4 8 4
2 4 2

/64

1 2 1
2 4 2
1 2 1

2 4 2
4 8 4
2 4 2

1 2 1
2 4 2
1 2 1

(2.5)

3. Practical Tests

We carry out a number of tests in 4D to compare our Brillouin operator with the standard
Wilson case. We use five ensembles of quenched SU(3) Wilson lattices at a fixed box size of
around ∼ 1.5 fm. Details of the ensembles are listed in Tab. 1. For all tests we use one step of APE
smearing [7], with the weight chosen at αAPE = 0.72.

In Fig. 3 we compare the convergence history of inverting either operator using the BiCGStab
algorithm on the same configuration. We have tuned such that the two inversions correspond to the
same quark mass. From the plot it is apparent that the Brillouin improved operator converges at
around half the iterations required in the standard Wilson case. Taking into account the computa-
tional cost of a single application of the Brillouin improved operator, we conclude that an inversion
using our improved operator is around 10 times more expensive than using standard Wilson.
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Figure 2: Comparison of the eigenvalue spectra of
the standard Wilson operator (blue) and the Brillouin
improved operator (red), in two dimensions (top) and
four dimensions (bottom), on U(1) backgrounds with
csw = 1.

Table 1: The quenched SU(3) configuration ensembles
used for our tests.

size β a (fm) a−1 (GeV)
103×20 5.72 0.160 1.236
123×24 5.80 0.133 1.479
163×32 5.95 0.100 1.978
203×40 6.08 0.080 2.463
243×48 6.20 0.067 2.964

Figure 3: Convergence history of BiCGStab for the stan-
dard Wilson case (blue) and the Brillouin improved operator
(red).

In order to carry out scaling tests we need to compare the two operators at the same physical
pion mass. Thus we carry out tuning runs where we scan for several values of the bare quark
mass and measure the effective mass of the pseudoscalar meson. This tuning is shown in Fig. 4,
where we plot the square of the pseudoscalar meson mass as a function of the inverse hopping
parameter, in units of the Sommer scale (r0). The solid horizontal lines correspond to two values
of the pseudoscalar mass which we explicitly target, in order to carry out the scaling tests, namely
(r0Mp)2 = 1.56 and (r0Mp)2 = 4.56, which we will hereby refer to as “light” and “strange”. We
additionally tune for a “charm” quark mass to yield (r0Mp)2 = 46.5.

In Fig. 5 we plot the bare quark mass as a function of the bare coupling (g0), for the two
aforementioned values of r0Mp, as well as for r0Mp = 0 (the critical bare mass). The dashed lines

are fits to a rational ansatz: c1g2
0+c2g2

0
1+c3g2

0
.

Having Fig. 5 we know exactly which bare quark mass to dial at any given lattice spacing for
the three target pseudoscalar meson masses. We confirm this in Fig. 6 where we plot the masses of
the pion, kaon and pseudoscalar ss̄ as a function of the lattice spacing squared. Having confirmed
that both operators have been tuned to the same mass at all spacings, we go on to compare the
approach to the continuum of the nucleon mass and the cascade mass using the two operators. The
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comparison is shown in Fig. 7, where we see that up to the coarsest lattice there is no significant
difference between the values obtained by the two operators.
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Figure 4: Tuning of pseudoscalar meson masses for
both operators.

Figure 5: Plot of the bare mass parameter, correspond-
ing to a given pseudoscalar mass, as a function of the bare
coupling.

Figure 6: Pion, kaon and s̄s meson masses as a function
of the lattice spacing squared.

Figure 7: Nucleon and cascade masses for both opera-
tors at all lattice spacings.

In Fig. 8 we show ratios of unimproved decay constants of pseudoscalar mesons for two cases:
the pseudoscalar strange over the pion decay constant and the pseudoscalar charm over the pseu-
doscalar strange decay constant. The ratios are taken in order to eliminate the unknown axial
current renormalization constant ZA, and thus compare directly the standard Wilson operator with
the Brillouin improved operator. As can be seen, for fs̄s/ fl̄l , there seems to be no significant dif-
ference between the two operators, and the continuum extrapolation appears to be flat within error
bars. For the other case of fc̄c/ fs̄s we see a significant difference. It appears that the scaling re-
gion for the case of the Brillouin improved operator extends further than that of standard Wilson.
This is an indication that cut-off effects may be more regularly behaved for the Brillouin improved
operator, since these are expected to be more pronounced for observables of heavy quarks.
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Figure 8: Ratio of meson decay constants as a function of the lattice spacing. Left for ss̄ over the pion, and right for
cc̄ over ss̄.

4. Conclusions and Summary

In this contribution, we have presented a new method for improvement of Wilson fermions
and have carried out a preliminary investigation on the operator this improvement yields. This
preliminary investigation shows that this operator is approximately ten times more expensive to
invert than standard Wilson. It is yet to be fully determined whether this increased computational
cost pays off at the end. So far our tests show that for the Brillouin operator the scaling region may
be larger, extending to coarser lattice spacings for the case of observables involving heavy quarks,
as compared to standard Wilson.

Another aspect we hope to clarify is the suitability of this improved operator as a kernel for
the overlap operator. The eigenvalue spectra suggest that using our method, the shifted operator
A = D†

−1D−1 has a smaller condition number than that of standard Wilson. A calculation of the
dependence of the smallest and largest eigenvalues on the bare mass will shed light on this subject.
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References

[1] P. Hasenfratz and F. Niedermayer Nucl. Phys. B414 (1994) 785–814, [hep-lat/9308004] .

[2] P. H. Ginsparg and K. G. Wilson Phys. Rev. D25 (1982) 2649 .

[3] H. Neuberger Phys. Lett. B417 (1998) 141–144, [hep-lat/9707022] .

[4] W. Bietenholz, R. Brower, S. Chandrasekharan, and U. J. Wiese Nucl. Phys. Proc. Suppl. 53 (1997)
921–934, [hep-lat/9608068] .

[5] MILC Collaboration, T. A. DeGrand Phys. Rev. D58 (1998) 094503, [hep-lat/9802012] .

[6] C. Gattringer Phys. Rev. D63 (2001) 114501, [hep-lat/0003005] .

[7] APE Collaboration, M. Albanese et. al. Phys. Lett. B192 (1987) 163–169 .

7

http://xxx.lanl.gov/abs/hep-lat/9308004
http://xxx.lanl.gov/abs/hep-lat/9707022
http://xxx.lanl.gov/abs/hep-lat/9608068
http://xxx.lanl.gov/abs/hep-lat/9802012
http://xxx.lanl.gov/abs/hep-lat/0003005

