
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
9
6

Meson and baryon masses with low mode averaging

Gunnar Bali, Luca Castagnini∗, Sara Collins
Institut für Theoretische Physik, Universität Regensburg,
93040 Regensburg, Germany
E-mail: gunnar.bali@physik.uni-regensburg.de,
luca.castagnini@physik.uni-regensburg.de,
sara.collins@physik.uni-regensburg.de

We describe and test a method known in the literature as low mode averaging to improve Eu-

clidean two-point functions in lattice QCD using the low-lying eigenmodes of the Wilson-Dirac

operatorD. The contribution from the low modes is averaged over all positions of the quark

sources while the contribution from high modes is calculated in the traditional way using one

source point per lattice. We apply this method to different baryon and meson two-point functions

and we compare the improvements using the eigenmodes of the non-hermitian operatorD and the

eigenmodes of the hermitian operatorQ = γ5D. The convergence strongly depends on the parity

of the states.
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1. Introduction

Solving the Dirac equationDψ = η may be a very time consuming task at small quark masses
as the condition number ofD is proportional to the inverse of the quark mass. Some approaches
involve the computation of the low-lying eigenvectors ofγ5D and use these to deflate the Dirac
operator, see e.g. ref. [1, 2]. These eigenvectors can also be used to reduce the noise of the signal
with a technique known in the literature [3, 4] as low mode averaging (LMA). This consists of
decomposing the quark propagator into a sum of high and low modesψ = ψhigh + ψlow and in
averaging the low mode contribution over all lattice points. We define the LMA two-point function
as,

CLMA (t) = Clow(t)+Cpa(t)−Cpa
low(t) , (1.1)

whereCpa is the exact point-to-all correlation function, calculated for a single source point. This
definition satisfies〈CLMA (t)〉= 〈Cpa(t)〉, however, the errorbars are reduced, due to more sampling
per lattice. In the present work we apply the LMA technique tomeson and baryon two-point
functions with degenerate quark masses. We study the improvement as a test for future work on
hadron spectroscopy and three-point functions.

2. Mesons

The present study is based on 100 configurations with latticevolumeV = 163×32 generated
with the quenched Wilson action atβ = 6.0175 using Chroma [5]. This corresponds to a lattice
spacing ofa≈ 0.2093σ−1/2 ≈ 0.093fm. For each configuration we computed the lowest 30 eigen-
vectors of the massive hermitian Dirac operatorγ5D|ui〉= λi |ui〉 using the algorithm by Kalkreuter
and Simma [6] atκ = 0.1557 corresponding tomπ ≈ 425 MeV andmπL ≈ 3.2. We can recon-
struct the contribution of the low modes to the quark propagator as [7],D−1

low = ∑i
1
λi
|ui〉〈ui |γ5 while

Clow(t) is given by,

Clow(t) = ∑
i, j,x,y

1
λi λ j

〈u j(x)|γ5Γ |ui(x)〉〈ui(y)|γ5Γ |u j(y)〉 , (2.1)

wherey4 = x4 + t.

Clearly the LMA technique works best when the low modes are dominant. This happens
for the π as can be seen from fig. 1 (left) where we compare the smeared-smearedπ point-to-all
correlation function with the low mode contribution. However, for positive parity mesons (see fig. 1
(right) for thea0), the low modes saturate the two-point function very slowly. This can also be seen
by comparing the LMA and point-to-all smeared-smeared effective masses of fig. 2 for negative
parity mesons with the positive parity ones of fig. 3. In the case of thea0 the low mode contribution
even has a wrong curvature in the central region, see fig. 1 (right).

The meson correlators differ in theΓ structure of the interpolating fields: for theπ (the best
case) we have a totalΓ productγ5Γ = 1 in eq. (2.1) while for thea0 this readsγ5Γ = γ5. One
way to get rid of aγ5 factor is to calculate the right and left eigenvectors of thenon-hermitian
Dirac operator,D|r i〉= λi|r i〉, 〈ℓi|D = λi〈ℓi | and to construct the quark propagator as [8, 9],D−1

low =

∑i
1
λi
|r i〉〈ℓi |. In this way the meson two-point function becomes,
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Figure 1: Low mode saturation (30 modes):π (JPC = 0−+, left) anda0 (JPC = 0++, right) two-point
functions.
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Figure 2: Effective masses:π (JPC = 0−+, left) andρ (JPC = 1−−, right)
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Figure 3: Effective masses:a1 (JPC = 1++, left) andb1 (JPC = 1+−, right).

Clow(t) = ∑
i, j,x,y

1
λi λ j

〈ℓ j(x)|Γ |r i(x)〉〈ℓi(y)|Γ |r j(y)〉 . (2.2)

Note that〈ℓi |r j〉 = δi j and it can easily be seen that due to the propertyD† = γ5Dγ5, λ ∗
i is an

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
9
6

Meson and baryon masses with low mode averaging Luca Castagnini

eigenvalue wheneverλi is an eigenvalue, with a left eigenvector〈ℓ̃i |= 〈r i |γ5 and a right eigenvector
|r̃ i〉 = γ5|ℓi〉.

We used the Arnoldi method implemented in the ARPACKm mLMA

π 0.2003(49) 0.2019(36)

ρ 0.3965(66) 0.3952(41)

Table 1: Fitted meson masses in
lattice units.

library to compute the non-hermitian eigenvectors. This method
is much slower than that of Kalkreuter and Simma. However,
the eigenvectors are independent of the hopping parameterκ
and when changing the quark mass we only need to rescale the
eigenvaluesλ . Unfortunately, we could not find any signifi-
cant improvement using 15 pairs of non-hermitian low modes

over the standard point-to-all method. This may be related to the fact that the ratios|λ30|/|λ1|
were found to be by factors of approximately five smaller in the non-hermitian case than for the
hermitian case.

From the fit to the correlators we found a 30% improvement on the extrapolatedπ and ρ
meson masses for the hermitian LMA, as displayed in table 1.
We also applied the method to the local axial-
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Figure 4: Local axial-vector current.

vector current (fig. 4), to test the improvement
on the pion decay constantfπ . Following the
conventions of ref. [10] we set,

mπ fπ = 〈0|γ4γ5|π〉 = −2κ
√

2mπAAP√
APP

. (2.3)

We denote the amplitudes of correlation
functions with a smeared pseudoscalar sink and
a local axial-vector source asAAP and with a
local pseudoscalar source asAPP. The improve-
ment of LMA is very striking in this case,

fπ = 0.079(27) , fπ,LMA = 0.082(12) . (2.4)

3. Baryons

The low mode averaging technique for baryons is more challenging due to the way the inter-
polators are contracted. For the nucleonN, the∆+ and theΛ we use the following interpolators,

N(x) = εabcu(x)a
(

u(x)T
bCγ5d(x)c

)

, (3.1)

∆+(x) = εabc
[

2
(

u(x)T
aCγµd(x)b

)

u(x)c +
(

u(x)T
aCγµu(x)b

)

d(x)c
]

, (3.2)

Λ(x) = εabc
[

2
(

u(x)T
aCγ5d(x)b

)

s(x)c +
(

u(x)T
aCγ5s(x)b

)

d(x)c−
(

d(x)T
aCγ5s(x)b

)

u(x)c
]

, (3.3)

whereC is the charge conjugation operator. Note that we only study the mass-degenerate case,
mu = md = ms. In the following, we consider the contractions for the example of the nucleon
two-point function,

〈N(y)N(x)〉 = 〈εabcεa′b′c′(Cγ5)αβ (Cγ5)α ′β ′(P±)γγ ′d(y)b′β ′d(x)bβ u(y)a′α ′u(x)aα u(y)c′γ ′u(x)cγ 〉 ,
(3.4)
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whereP± = 1
2(1± γ4) is the parity projector.

The expression eq. (3.4) can be written in terms of the left and right eigenvector components
in a way that the source term is decoupled from the sink term:

〈N(y)N(x)〉 = ∑
i, j,k

1
λi λ j λk

{

εa′b′c′(Cγ5)α ′β ′
[

r i,b′,β ′(y)r j,a′ ,α ′(y)rk,c′ ,γ ′(y)
]}

(P±)γγ ′

×
{

εabc(Cγ5)αβ ℓ∗i,b,β (x)
[

ℓ∗j,a,α (x)ℓ∗k,c,γ (x)− ℓ∗j,c,γ (x)ℓ
∗
k,a,α (x)

]

}

.

(3.5)

For the hermitian case,γ5D|ui〉 = λi|ui〉, |r i〉 = |ui〉 and〈ℓi | = 〈ui |γ5. The cost of computing the
above expression increases with the third power of the number of eigenmodes used. To optimize
this computation, we split up each eigenvectorr into twelvera,α spin-colour components and store
them as lattice objects. Multiplications liker i,a,α r j,b,β are optimized in QDP++. With these and
other optimizations the cost of the contractions for 30 eigenmodes becomes negligible relative to
the cost of solving for the propagator.
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Figure 5: Nucleon (JP = 1
2
+

) two-point function and effective masses. The backwards propagating

state is theN∗ (JP = 1
2
−

).
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Figure 6: Low mode contribution to the nucleon two-point function on a 43×8 lattice. On the right
hand side thet = 6,7 data are shown without the logarithmic scale.

In fig. 5 we show the low mode saturation of the nucleon two-point function and the LMA
improvement of the corresponding effective mass. The low mode contribution for theN∗ turns
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out to be negative and is not visible on the logarithmic scale. To gain a better understanding of
this behaviour we investigated a small 43 × 8 lattice volume where we calculated all the 6144
eigenvectors of the Wilson operator using the LAPACK library. In fig. 6 we display the nucleon
two-point functionClow(t) on such a single configuration for different numbers of eigenmodes.
For the positive parity state that propagates fromt = 0 into the forward direction the low modes
are dominant and quickly saturate the correct correlation function. Conversely, for the backward
propagating states even the sign is wrong until over 85 % of the modes are summed up. Eventually,
after all modes are included, the correct result is obtained. We also tested non-hermitian LMA for
baryons. This did not solve the sign problem for negative parity states and, as in the mesonic case,
no improvement over the conventional point-to-all method was found.
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Figure 7: Effective masses for the∆+ (JP = 3
2
+

, left) andΛ (JP = 1
2
−

, right).

For the∆+ and theΛ a behaviour similar to that of the m mLMA

p 0.604(16) 0.595(7)

∆+ 0.717(20) 0.713(12)

Λ 0.586(17) 0.592(9)

Table 2: Fitted baryon masses in
lattice units formu = md = ms.

nucleon was found. In fig. 7 we display the effective mass
plots. The negative parity partners are not well approximated
by the lowest modes that exhibit the wrong sign. However,
LMA reduces the statistical errors for the forward propagating
states. The errors on the fitted positive parity baryon masses are
reduced by factors of roughly two, using the hermitian LMA
method, see table 2.

4. Conclusions

We confirm that the hermitian low mode averaging technique isan efficient method to reduce
the noise of two-point functions and of the fitted hadron masses. It works well for negative parity
mesons and very well for positive parity baryons but it failscompletely for the opposite parity
cases where low mode saturation does not set in at all. Non-hermitian low mode averaging was
inefficient for all particles studied, due to its slower saturation behaviour.

It should be pointed out that computing the low lying eigenmodes is computationally demand-
ing. Preliminary tests on a 243 × 48 volume withmπ ≈ 420 MeV (mπL ≈ 4.8) show that it is
more efficient to increase the number of point sources than tocompute the eigenvectors, to reduce
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the errors on meson masses. For baryons the LMA is cost-efficient. If one further decreases the
quark mass then on one hand the costs of computing propagators will drastically increase while
on the other hand low mode saturation may set in faster, making this method even more efficient.
Moreover, eigenvectors may be recycled for deflating the Dirac operator, in particular if multiple
source points per configuration are used, see e.g. refs. [1, 2]. In this case the overhead of LMA is
negligible.
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