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1. Introduction

The sigma term and the strangeness content of the nucleon are phenomenologically relevant
quantities which, however, cannot be directly measured in experiment.

They are of interest, because they link the pion-nucleon and kaon-nucleon scattering lengths
to the hadron mass spectrum, to the quark mass ratioms/mud, wheremud=(mu+md)/2 denotes the
isospin averaged first generation quark mass, and – last but not least– to the strangeness content of
the nucleon which, in turn, has a say on the importance of quantum fluctuations.

That the sigma term cannot be directly1 measured in experiment follows from the definition

σπN ≡ 〈N(p)|muūu+mdd̄d|N(p)〉 = ∑
q=u,d

mq
∂MN

∂mq
(1.1)

σπN ≡ 〈N(p)|mud(ūu+ d̄d)|N(p)〉 = mud
∂MN

∂mud
(1.2)

since, in nature, we cannot change the quark masses. Here we have specified the simplification
that emerges in the isospin limit where the up and down quarks assume a common mass mud.
By contrast, on the lattice we can vary the quark masses, and this opens a unique opportunity to
determine the pion-nucleon sigma term from lattice QCD datasets with several pion masses.

Provided the lattice simulations include a strange quark (which ours do), onecan also study
the kaon-nucleon sigma term and the ¯ss-nucleon sigma term

σKN ≡
1
2
(mud+ms)〈N|ūu+ s̄s|N〉 =

1
2
(mud +ms)

{1
2

∂MN

∂mud
+

∂MN

∂ms

}

(1.3)

σs̄sN≡ 2ms〈N|s̄s|N〉 = 2ms
∂MN

∂ms
(1.4)

where in practice it is common to trade (1.4) for the strangeness content of the nucleon

yN ≡
2〈N(p)|(s̄s)(0)|N(p)〉

〈N(p)|(ūu+ d̄d)(0)|N(p)〉
(1.5)

to which it relates viayNms/mud = σs̄sN/σπN. Also the sigma terms are linearly dependent in the
isospin symmetric case (which we will assume in the following, unless stated otherwise), since
σπN/mud +σs̄sN/ms = 4σKN/(mud +ms). The sigma terms have the dimension of a mass (without
showing any scheme or scale dependence), while the strangeness content is a pure number.

On the lattice there are two main strategies to determine the sigma terms. One option is to stick
with the definitions in (1.1-1.4), which then leads one to evaluateqq̄ in a nucleon in and out state.
This is technically involved (and noisy), due to quark line disconnected contributions [1]. The
second option is to use the Hellmann-Feynman theorem (in a form adapted to field theory [2]) and
to determine the sigma terms from the variation of the nucleon mass as a function ofthe up/down
or strange quark mass. In the following, we chose the second option, albeit in the version where
one trades the dependence onmud andms for one inM2

π andM2
s̄s= 2M2

K −M2
π , as this choice avoids

1Measurable quantities like theπN andKN scattering lengths can be linked to (1.1, 1.2) and (1.3) by means of
formulas from XPT, but this should not be mistaken as a direct measurement of the sigma term.
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Figure 1: Overview of our simulation points in terms ofMπ andMs̄s≡ (2M2
K −M2

π)1/2. The lattice spacings
for the three values ofβ area≃0.124fm (β =3.3), a≃0.083fm (β =3.57), anda≃0.065fm (β =3.7),
respectively, and the physical point is marked with a cross.Error bars are statistical only.

renormalization issues. In other words, we measureMN for various combinations ofM2
π andM2

s̄s

(and various lattice spacingsa and box sizesL), interpolate the results with ansaetze which we will
discuss below, and evaluate the slope of the interpolation function in the relevant direction at the
physical mass point. In practice, this interpolation is actually an extrapolation inM2

π (whereas the
data have essentially the rightM2

s̄s), and it is clear that outside the range where we have data the
uncertainty on the derivative grows much faster than the uncertainty on thefunction itself.

In the following we discuss the details of our ensembles in Sec. 2, and some key features of a
novel functional ansatz for octet baryon masses derived from covariant baryon chiral perturbation
theory (CBXPT) in Sec. 3. First experiences with this formula and, as a complement, with more
traditional polynomial and rational ansaetze are reported in Sec. 4 and Sec. 5, respectively. The
main goal is to give a reliable estimate which precision can be achieved with our current data, and
this together with some preliminary numbers and some outlook is arranged in Sec.6.

2. Overview of our “6 stout” dataset and scale setting issues

The dataset to be used is the one that has been generated for our study of the hadron spectrum
in QCD [3], and the overall spirit of the analysis is the same one as in thefK/ fπ paper [4].

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
0
2

Sigma term and strangeness content of the nucleon S. Dürr and A. Ramos

The ensembles have been generated with two degenerate light quarks anda separate strange
flavor, a scheme commonly referred to asNf =2+1 QCD. They are based on a Symanzik action with
tree-level coefficients for the gluons and a clover action with 6 levels of “stout” or “EXP” smearing
applied to all links which enter the covariant derivative or the clover term. This combination was
found to entail very good scaling properties in standard hadron observables [5]. Note, finally, that
our multiply smeared fermion action is as local as the unsmeared clover quark inthe usual sense
of locality, i.e.D(x,y)=0 for ||x−y||>1. Still, in the sense of gauge field locality it has a more
extended range:δD(x,x)/δUµ(y) is non-zero for||x−y|| larger than 1 unit, albeit with a steep
fall-off pattern – see the supplementary online material of [3] for details.

Our ensembles include three lattice spacings (a≃ 0.065,0.083,0.124fm) and the light quark
massmud is varied such that the pion mass covers the range from 190MeV to 670MeV. By contrast
the strange quark massms is almost the physical one; the combinationM2

s̄s≡ 2M2
K −M2

π is always
in the vicinity of its physical value. The physical box sizeL is such thatMπL is in the range of
4 or larger; this limits finite-volume effects on our hadron masses to an amount smaller than the
statistical fluctuations [3]. An overview of these ensembles (to which we refer to as the “6 stout”
or “6 EXP” data) in terms ofMπ andMs̄s=(2M2

K −M2
π)1/2 is given in Fig. 1. The smallness of our

minimal pion massMmin
π ≃190MeV bears the promise that the extrapolation to the physical point

is a relatively mild one, thus entailing a controllable systematic error in the final result.
All dimensionful quantities in the previous paragraph implicitly build on knowledge of the lat-

tice spacinga. This brings us to the issue of how the scale is set which, as we shall see, receives an
extra twist when derivatives w.r.t. the quark mass are taken, relative to thecase when only spectral
quantities at the physical mass point are calculated. The physical mass pointis the point where any
2 of the 3 ratios that one may form fromaMπ , aMK , aMX (with X being the particle through which
the scale is set, we will considerX = N,Ξ,Ω below) take on their physical values. Apart from the
quantityX to be used to set the scale, there is also a choice regarding the scale setting scheme. In [3]
we used two such schemes, the “mass independent scale setting scheme” and the “ratio method”.
In the former case for any givenβ the measuredaMπ ,aMK ,aMX are interpolated by a smooth
function of the bare quark massesamud,ams and at the point where(aMπ)/(aMX),(aMK)/(aMX)

assume their physical values the interpolatedaMX is identified witha times the physical value of
MX; this yields the lattice spacinga for all ensembles with a common coupling parameterβ . In the
latter case dimensionless ratios are formed on a per ensemble basis, and these ratios are interpolated
with a smooth function ofamud,ams, and read off at the point where(aMπ)/(aMX),(aMK)/(aMX)

assume their physical values. Effectively this means that the scale is set for each ensemble indi-
vidually; the lattice spacinga depends on the combination(β ,amud,ams). While these two scale
setting schemes yield identical results (at the physical mass point) for all spectral quantities [3],
there is a slight subtlety if sigma terms are evaluated via the Hellmann-Feynman theorem.

For definiteness, let us consider the pion nucleon sigma term at a fixed physical value ofms,
as a function ofmud. The way it is calculated on the lattice amounts to the factorization

σπN(mud) = mud
∂MN

∂mud
≃ M2

π
∂MN

∂M2
π

=
[

MX

]

PDG

[M2
π

MX

∂MN

∂M2
π

]

latt/phys−pt
(2.1)

where the apparent dependence on the scale setting channelX actually boils down to cut-off effects
at the physical mass point (which then disappear in the continuum limit), while it seems there is an
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ambiguity in the last bracket for which the continuum limit does not provide a remedy. The point
is that the derivative in the last bracket makes reference of the true scale awayfrom the physical
mass point, and this is, as we have just seen, ambiguous. Perhaps it is easiest to discuss an extreme
case first. If we set the scale through the nucleon, then the pion nucleon sigma term with the “ratio
method” is – by definition – zero, i.e.σN,rat

πN =0. And if we set the scale through the omega, the
pion nucleon sigma term with the “ratio method” evaluates to the same amount as the difference
between the pion nucleon sigma term and the pion omega sigma term in the “mass independent
scale setting scheme” would, i.e.σΩ,rat

πN = σmisss
πN −σmisss

πΩ .

Taking a look at (1.1, 1.2) reveals the origin of this apparent discrepancy. The matrix elements
refer exclusively to the physical mass point, and can be evaluated withoutany ambiguity (at least
with a Ginsparg-Wilson type action). The not-so-innocent part is the derivative w.r.t. the quark mass
taken in the last equalities. Here it is (implicitly) assumed that the lattice spacing does not change
as the quark mass is varied, and this is why we must assume – for consistencyreasons – the “mass
independent scale setting scheme” when evaluating sigma terms, on the lattice, via the Hellmann-
Feynman theorem. In other words, the requirement to attribute a common lattice spacinga to all
ensembles with one couplingβ comes about through the specific transcription of the observable of
interest; in general there is no restriction on the scale setting scheme. Still, it holds true that the
QCD β -function depends, for asymptotic coupling (i.e. for small enough lattice spacing), only on
thenumberof active flavors, not on their masses. Accordingly, the “mass independent scale setting
scheme” is always applicable, since it stipulates a property at finite lattice spacing which, due to
asymptotic freedom in QCD, must hold at arbitrarily small lattice spacing.

3. Octet masses in CBXPT

Given the discussion in the previous sections, it is clear that a controlled determination of the
pion nucleon sigma termσπN relies on accurate measurements of the nucleon mass at various pion
and kaon mass points, and a smooth ansatzMN = MN(M2

π ,M2
s̄s) which is valid in the entire regime

from the heaviest datapoint included in the fit down to the physical pion mass(and eventually down
to the chiral limit, if one wishes to determine chiral low-energy constants).

In the present contribution we focus onσπN at the physical mass point. For this purpose it is
fully sufficient to come up with an analytic (i.e. polynomial or rational) expression for MN(M2

π ,M2
s̄s)

and an analogous expression forMX(M2
π ,M2

s̄s) for the stateX that is used to set the scale, since – in
the interval betweenMphys

π andMmax
π of the dataset – QCD is an analytic function of the quark

masses. Preliminary results from such an approach will be reported in Sec. 5 below.

In a further perspective it is clear that we will not be able to resist the temptation of testing the
host of predictions by chiral perturbation theory (XPT) of how different quantities relate to each
other. In XPT the quantities connect through their behavior in the (2-flavor or 3-flavor) chiral limit,
and this is the reason why, with this goal in mind, the ansatz must be good all the way down to zero
quark mass. TheNf -flavor chiral limit of QCD is dominated by the logarithmic singularity induced
by the spontaneous breaking of the flavorSU(Nf )A symmetry and the dynamics of the pertinent
pseudo-Goldstone bosons. For observables built from pseudoscalar mesons the consequences have
been cast into a valid form in the seminal papers by Gasser and Leutwyler [6, 7].
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gMB N Λ Σ Ξ
π 3

4(D+F)2 D2 1
3(D2+6F2) 3

4(D−F)2

K 1
6(5D2−6DF+9F2) 1

3(D2+9F2) (D2+F2) 1
6(5D2+6DF+9F2)

η 1
12(D−3F)2 1

3D2 1
3D2 1

12(D+3F)2

Table 1: Summary of the baryon-meson-baryon couplingsgMB in terms of the low-energy constantsD,F .

For observables that include baryons the task is significantly more involved, and we attempt to
give a short explanation why there is a plethora of different versions of chiral perturbation theory for
baryons. Ultimately, they all rest on Weinberg’s power counting theorem [8], but the basic difficulty
is that the quadratic divergence in self-energies, brought about by ameson loop attached to a given
line, cannot be traded for a logarithmic divergence, as is the case in the dimensionally regulated
setup of meson XPT. The original approach taken by Gasser, Sainio andSvarc [9] (“OBXPT”)
is to live with this fact and to pay a certain price in terms of a slowly converging series away
from the chiral limit. The heavy baryon approach by Jenkins and Manohar [10] (“HBXPT”) treats
the nucleon as a non-relativistic particle, and in this approach it was shownthat the∆ can be
introduced as an explicit degree of freedom and that this improves convergence [11, 12]. The
covariant approach taken by Becher and Leutwyler [13] (“CBXPT”)aims at establishing relativistic
covariance again, via infrared regularization. To the best of our knowledge, in this framework other
octet members have not been included as explicit degrees of freedom yet.

In short one can say that the HBXPT approach is very successful for those observables where
the physics is completely dominated by light (i.e. physical or lighter) pions which are treated as
the pseudo-Goldstone mesons in QCD with 2 light flavors. Extensive work inthe nineties showed
that applications of HBXPT to baryon observables that depend on the strange quark flavor lead,
in general, to large (i.e. unnatural) cancellations between leading order and next-to-leading order
contributions (see e.g. [14, 15, 16]). During the first decade of the new millennium, this insight
was painfully re-discovered by the lattice community, as several collaborations attempted chiral
extrapolations (mud → 0 at fixedms) of 2+1 flavor baryon data, using only leading-order HBXPT
formulas. This triggered a search for “better” (i.e. more practical) recipes, for instance

• finite-range regulator extensions of HBXPT to include or model higher order effects (see e.g.
Amherst group [15] and Adelaide group [17, 18])

• taming higher order effects by adding a host of decuplet contributions in HBXPT/NRSSE
(see e.g. LHP Collaboration [19] and others [20])

• resort to polynomial/rational fit functions inM2
π ∝ mud (e.g. us [3, 4] and other groups)

• resort to polynomial/rational fit functions inMπ ∝ m1/2
ud (see [19, 21]).

• modify integration contour in CBXPT approach (cf. Dorati-Gail-Hemmert [22])

but a fair review of these developments is clearly beyond the scope of this contribution.
In the following, we are going to explore the suitability of one such formula, which belongs to

the last point in this list. It has been worked out by one of us (TH) and involves the function

H(X2) ≡−
X3

4π2

{

√

1−
X2

4M2
0

arccos
( X

2M0

)

+
X

4M0
log

( X2

M2
0

)

}

(3.1)
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whereX will be a meson mass. Furthermore, it builds onSU(3) relations among the various
baryon-meson-baryon couplingsgMB, as is evident from Tab. 1. The set(D,F) relates to the more
common pair(ξ ,gA) throughξ = F/D andgA = D + F. The two main attractive features, from
our point of view, are that this formula describes how the complete set of baryon octet states varies
as a function of the meson masses, and that there is a chance that it remains adequate up to higher
pion masses than is usual in the HBXPT approach (say up toMπ ∼ 400−500MeV rather than
Mπ ∼ 200−300MeV). In full glory it reads

MN = M0−2(2b0 +bD +bF)M2
π −2(b0 +bD −bF)M2

s̄s

+
gπN

F2
π

H(M2
π)+

gKN

F2
K

H(M2
K)+

gηN

F2
η

H(M2
η)+4δπM4

π +4δs̄sM
4
s̄s (3.2)

MΛ = M0−4(b0 +bD/3)M2
π −2(b0 +4bD/3)M2

s̄s

+
gπΛ

F2
π

H(M2
π)+

gKΛ

F2
K

H(M2
K)+

gηΛ

F2
η

H(M2
η)+4δπM4

π +4δs̄sM
4
s̄s (3.3)

MΣ = M0−4(b0 +bD)M2
π −2b0M2

s̄s

+
gπΣ

F2
π

H(M2
π)+

gKΣ

F2
K

H(M2
K)+

gηΣ

F2
η

H(M2
η)+4δπM4

π +4δs̄sM
4
s̄s (3.4)

MΞ = M0−2(2b0 +bD −bF)M2
π −2(b0 +bD +bF)M2

s̄s

+
gπΞ

F2
π

H(M2
π)+

gKΞ

F2
K

H(M2
K)+

gηΞ

F2
η

H(M2
η)+4δπM4

π +4δs̄sM
4
s̄s (3.5)

with all meson-baryon couplingsgMB parametrized by only two constants, as indicated in Tab. 1.
In total this gives a parametrization with 8 unknowns:M0, b0, bD, bF , ξ , gA, δπ , δs̄s. Note that the
coefficients in front of theM4

π andM4
s̄scontributions are common to all octet members. To the order

we are working at only two of the three pseudo-Goldstone boson masses are linearly independent;
they are connected through the Gell-Mann-Okubo relation 3M2

η = 4M2
K −M2

π . Accordingly, it
makes sense to consider(M2

π ,M2
s̄s) the basic mass coordinates.

4. First experiences with CBXPT extrapolations

Before applying formula (3.2-3.5) to our data, let us make a few practical comments. First, it
is important to notice that this formula builds onSU(3) chiral symmetry. Accordingly,M0 denotes
the (common) mass of the baryon octet in the 3-flavor chiral limit. Phenomenology suggests a value
in the rangeM0 ∼ 770MeV, although with a large error margin [23]. Clearly, this is an opportunity
for the lattice to come up with a considerably more precise determination. Next, thecoefficients
D andF are reasonably well known from phenomenology. It makes sense to fix the combination
gA = D + F = 1.2694(28) [24] to its value at the physical nucleon mass, as the difference to the
value in the chiral limit is expected to be small. For the ratioξ = F/D the situation is less clear;
there are two preferred scenarios in the literature,ξ = 2/3 andξ ≃ 0.5.

A few comments are in order regarding the pseudoscalar decay constantsFπ ,FK ,Fη . First, let
us clarify that we use the “Bernese” normalization whereFphys

π = 92.2MeV. The more relevant
point is that, whatever choice is made forFπ ,FK ,Fη , it is not supposed to destroy theSU(3) chiral
symmetry in the 3-flavor chiral limit. Accordingly, pinningFπ ,FK ,Fη down at their phenomeno-
logical values is not an option. We see three legitimate choices:(i) use a joint 3-flavor chiral

7
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Figure 2: Result of one particular “snapshot fit” of the ansatz (3.2-3.5) to our “6 stout” dataset with a mass
cut Mπ < 410MeV. For display purposes the data have been shifted, by means of (4.1), to[M2

s̄s]phys (top)
and[M2

π ]phys (bottom), and only the remaining dependence onM2
π (top) orM2

s̄s (bottom) is shown.
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limit value F0, (ii) use anSU(3) chiral formula (e.g. the one at NLO withF0,L4,L5) (iii ) use the
measured data (perhaps with anSU(3) compatible interpolation, in any case this requiresZA).

In the following we present the result of one particular fit based on choice(i). This fit addresses
the full baryon octet and yields, in principle, eight sigma terms (σπN,σs̄sN and ditto forΛ,Σ,Ξ).
Due to its preliminary nature, and because the comparison with the analytic approach is not ready
for other channels, we will just quoteσπN,σs̄sN. Still, one should keep in mind that these numbers
are preliminary, and the assessment of systematic uncertainties is not yet finalized.

Having made these cautionary remarks, we are in a position to present in Fig.2 the result of a
fit of the ansatz (3.2-3.5) to our data. The parametersM0, b0, bD, bF , δπ , δs̄s, F0 have been adjusted
by the fit (to reasonable values), while(ξ ,gA) = (2/3,1.2694) was held fixed. All together, this
is a fit with 7 free parameters to 40 datapoints with an uncorrelatedχ2 = 8.39. The resulting
uncorrelatedχ2/d.o.f. ≃ 0.25 seems plausible, since the four octet masses in each ensemble being
highly correlated will lead to an underestimate of the trueχ2/d.o.f. by about a factor four.

Note that this is the result of one “snapshot fit”, i.e. with a specific choice ofthe fitting window
[tmin, tmax] for each state, with one pion mass cut (hereMπ <410MeV), and so on. This particular
fit yields σπN = 55(10)statMeV, where the quoted error is only statistical, andyN ∼ 0.16. To get a
trustworthy estimate of the systematic uncertainty, one should consider reasonable variations over
the fitting range, the pion mass cut, the scaling behavior of cut-off terms, andthe functional ansatz
for the dependence on(M2

π ,M2
s̄s), as will be briefly discussed in Sec. 6 below.

A technical point worth mentioning is the shift recipe applied to show the resultof the fit. As
is clear from the discussion, the fit spans, for each baryon octet member, a two-dimensional surface
above the(M2

π ,M2
s̄s) coordinates depicted in Fig. 1. However, because it is difficult to graphically

display how 40 datapoints behave relative to 4 surfaces, we resort to twoone-dimensional plots.
We “shift” the data, along the surface established in the fit, to the physical value ofM2

s̄sand plot the
remaining dependence onM2

π . In other words what is plotted in the first panel of Fig. 2 is [4]

data(M2
π ,2M2

K−M2
π)−fit(M2

π ,2M2
K−M2

π)+fit(M2
π , [2M2

K−M2
π ]phys) (4.1)

and a similar shift is applied, in the second panel, to bring all datapoints to a common value ofM2
π

and depict the remaining dependence onM2
s̄s. It goes without saying that the recipe (4.1) does not

affect the fit itself, it just helps to display the result.

5. First experiences with analytic extrapolations

A complete analysis of a phenomenological variable at the physical mass point must include
a variation over the fitting ansatz that is used to interpolate or extrapolate the data. To this aim we
include polynomial and rational ansaetze into our analysis, in the same way aswe did in [4].

This analytic approach builds on the fact that an expansion of QCD Green’s functions about
the physical point(mphys

ud ,mphys
s ) is completely regular. Therefore it makes sense to define dimen-

sionless expansion parameters∆π ∼ (mud−mphys
ud )/Λ, ∆s̄s∼ (ms−mphys

s )/Λ, and to express the
measured octet mass as a function of these parameters. At this point details matter. We prefer

∆π =
( aMπ

a·Mphys
X

)2
−

(Mphys
π

Mphys
X

)2
, ∆s̄s=

( aMs̄s

a·Mphys
X

)2
−

(Mphys
s̄s

Mphys
X

)2
(5.1)
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Figure 3: Result of one particular “snapshot fit” with the polynomial and rational ansatz (5.3, 5.4), where
the scale is set through theN. The same shift procedure (4.1) has been applied to the data as in Fig. 2.

with X being the scale setting state over the alternative choice

∆′
π =

(aMπ

aMX

)2
−

(Mphys
π

Mphys
X

)2
, ∆′

s̄s=
(aMs̄s

aMX

)2
−

(Mphys
s̄s

Mphys
X

)2
(5.2)

since in (5.1) all dependence on the simulatedamud, ams is in the very first numerator, while in
(5.2) the numerator and the denominator of the first terms depend on the quark masses.

With such small mass parameters in hand, and bearing in mind that the range of simulatedM2
π

is much larger than the range of simulatedM2
s̄s (cf. Fig. 1), we consider the polynomial ansatz

(aMN) = a·Mphys
N

[

1+c1∆π +c2∆2
π +c3∆s̄s

]

(5.3)

wherec1,c2,c3 and the isolateda (per couplingβ , cf. the discussion in Sec. 2) are the fit parameters.
Obviously, with this choice one sets the scale through the nucleon mass, whichmeans that the
quantity that is effectively calculated isσπN/MN at the physical mass point. Likewise

(aMN) = a·Mphys
N

[

1−d1∆π −d2∆2
π −d3∆s̄s

]−1
(5.4)

is a rational ansatz with similar characteristics. With any such fit in hand, one proceeds along the
lines of (2.1) and evaluates the change of the fit function under a changeof (aMπ)2, (aMs̄s)

2. With
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Figure 4: Result of one particular “snapshot fit” with the global polynomial ansatz, where the scale is set
through theΩ, with Mπ < 410MeV. The same shift procedure (4.1) has been applied to the data as in Fig. 2.
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a simple ansatz like (5.3) or (5.4) this can even be done analytically, giving

σπN = mud
∂MN

∂mud

∣

∣

∣

phys
= M2

π
∂MN

∂M2
π

=
[M2

π
MN

]

phys
c1 (5.5)

σs̄sN = 2ms
∂MN

∂ms

∣

∣

∣

phys
= 2M2

s̄s
∂MN

∂M2
s̄s

= 2
[M2

s̄s

MN

]

phys
c3 (5.6)

y =
ms

mud

σs̄sN

σπN

∣

∣

∣

phys
= 2c3/c1 . (5.7)

In the same spirit, one may consider a global polynomial or rational ansatz which fits the entire
baryon octet at once. In this case setting the scale through an octet memberwould introduce some
asymmetry, and it seems advisable to include one more fit to useX=Ω for this purpose.

With the same cautionary remarks applicable as in Sec. 4, we show some “snapshot fits” to
the ansaetze (5.3) and (5.4) in Fig. 3. They yieldσπN = 53(14)statMeV andσπN = 44(6)statMeV,
respectively, whith the quoted errors being statistical only. The result ofa joint “snapshot fit” to
the full octet is presented in Fig. 4. Here, the scale is set through theΩ, and the same pion mass cut
Mπ <410MeV is used as in Fig. 2. BothσπN = 52(10)statMeV andyN ∼ 0.13 are well compatible
with what was found in the CBXPT approach. In fact, with either fit the strangeness content is
well consistent with zero. Going back to Fig. 1 and the bottom panel of Fig. 2or Fig. 4 it appears
that this is linked to our strange masses being slightly above the physical target value. Likely, with
simulated values of 2M2

K−M2
π covering the entire range between (say) 0.3GeV2 and 0.65GeV2

[such that the physical value of 0.47GeV2 would be the center of this range] one would have a
better chance of determining the slope. Note that for the other octet members, the situaton looks
better, since their slope in the ¯ssdirection seems to be larger.

6. Preliminary results and outlook

Given the discussion in the previous two sections, it is clear how we should proceed to come up
with a valid determination of the nucleon sigma terms (or equivalently ofσπN, yN) and analogous
sigma terms for the baryon octet states.

We have implemented several functional ansaetze to describe the dependence of the baryon
state on(M2

π ,M2
s̄s). Both the CBXPT ansatz tested in Sec. 4 and the family of polynomial and

rational ansaetze tested in Sec. 5 yield reasonable results for the sigma terms(and in the former
case also for the low-energy parameters). With such an interpolation in hand, one may compute
the derivatives with respect toM2

π , M2
s̄s, at the physical mass point. In some cases this is a simple

function of the fitted parameters. In other cases it proves more convenient to evaluate the derivatives
with respect to the measuredMπ , MK and to convert via

σπN(mud) ≃ M2
π

dMN

dM2
π

∣

∣

∣

Ms̄sfixed
= M2

π
∂MN(Mπ ,MK)

∂M2
π

+M2
π

∂MN(Mπ ,MK)

∂M2
K

∂M2
K

∂M2
π

∣

∣

∣

Ms̄sfixed

=
Mπ

2
∂MN(Mπ ,MK)

∂Mπ
+

M2
π

4MK

∂MN(Mπ ,MK)

∂MK
(6.1)

σs̄sN(ms) ≃ 2M2
s̄s

dMN

dM2
s̄s

∣

∣

∣

Mπ fixed
= 2M2

s̄s
∂MN(Mπ ,MK)

∂M2
K

∂M2
K

∂M2
s̄s

∣

∣

∣

Mπ fixed

=
M2

s̄s

2MK

∂MN(Mπ ,MK)

∂MK
(6.2)

12



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
0
2

Sigma term and strangeness content of the nucleon S. Dürr and A. Ramos

where again everything is evaluated at the physical mass point.
What remains to be done is the systematic variation of all ansaetze over the original fitting

window, over the pion mass cut, and over the scaling pattern of potential discretization effects. Of
course, all of this should be done onO(1000) bootstrap samples to assess the statistical uncertainty,
but this part is standard. This kind of machinery was used in Ref. [4] to give a reliable assessment
of both the statistical and the systematic uncertainty of the observable of interest (fK/ fπ ).

For the pion-nucleon sigma term in MeV units our fits usually yield values in the lower fifties
with typically about ten MeV statistical error. With hindsight we thus anticipate that the final
result will be in the range ofσπN ≃ 50(10)(10)MeV, where in each slot only one digit is meant
to be significant. Regardingσs̄sN or yN the situation is less convincing. With the “6 stout” dataset
depicted in Fig. 1 we obtain, with each ansatz, large statistical errors and non-negligible spreads
among the ansaetze. Currently, a value likeyN ≃ 0.1(2)(1) seems appropriate, which would not
even tell whether there is a non-zero strangeness content at all. Our current understanding suggests
that, in order to obtain a substantially more precise value, one would have to add simulation points
with significantly smaller strange quark mass than we have right now.
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