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1. Introduction

The finite-size method, originally proposed by Liischer@llhws us to calculate the scattering
phase of two particles in infinite volume from the energy pigdues of a two-particle system
enclosed in a finite spatial box. For a fixed finite volume, tt&ttering phase is determined at a
discrete set of energies. To better capture the energy depee of the scattering phase, we would
like to increase the number of energy eigenvalues accedsiliditice calculations. Particularly, in
a scattering channel where a resonance appears, we waltutatathe scattering phase at many
energies in the resonance region in order to determine Humadce parameters such as the mass
and width.

One method to address this issue is to use different latties $o obtain the scattering phase
at more energy values. However, this requires additiomaukitions that are increasingly more
demanding at large volumes. An alternative way is to use theing frame (MF) technique,
introduced by Rummukainen and Gottlieb [2], which geneeaiLlscher’s original method from
the center-of-mass frame (CMF) to a MF. The key point is thatenergy spectrum calculated in a
MF is different from the one obtained in the CMF. Thus comfminihe CMF and a MF allows us
to compute the scattering phase at more energies usingrtieelatiice size. This will increase the
accuracy of the calculation of the desired resonance paeasiier less computational cost.

As an application, we have performed a calculation of theaReapion-pion scattering phase
in the p-meson decay channel using three Lorentz frames: the CMlerihinal MF with total mo-
mentumP = (211/L) e3 (MF1) and a second MF witR = (2r1/L)(e; + €2) (MF2). This approach
allowed us to determine the scattering phase as a functidineoénergy covering the resonance
region [3]. MF2 is a new MF for which the finite-size formulaem@ not yet available in the liter-
ature. In this work, we present a derivation of the finiteedarmulae for this MF. Our derivation
closely follows the work in Refs. [1, 2].

2. Two-particle wave function

Consider a two-particle system with total momentBs# 0. The state of such a system can be
described by a wave functiop(x), wherex is the relative position between the two particles. To
establish the formula for the scattering phase, which iarally defined in the CMF, we need to
transform the scattering system from the MF to the CMF. Thimcicomplished by the appropriate
Lorentz transformation, parameterized fagyunder which the wave function transforms framto
™.

We assume that the two-particle interaction vanishes imeég®n wherelx| > R, called the
exterior region. Then in the exterior regigau(x) satisfies the Helmholtz equation

(0%+ p?)gem(x) =0, for [x| >R, (2.1)

wherep is given by the energy-momentum relatiph = (Ecy/2)? — m? with Ecy the center-of-
mass energy anth the single-particle mass. If we consider such a two-partsgistem enclosed
in a box with finite sizeL > 2R, then the total momenturR is discretized a® = (2r7/L)d with

d € Z2 and@m(x) satisfies thel-periodic boundary condition

@m(X) = (—1)%"@m(x+ynL), for all nez3. (2.2)
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The details of the derivations of Egs. (2.1) and (2.2), alaith any unexplained notation such as
yn, can be found in Ref. [2].

A function that satisfies the Helmholtz equation (2.1) aneysithed-periodic boundary con-
dition (2.2) is called a singulad-periodic solution of the Helmholtz equation. A simple exden
of such a solution is the Green'’s function

epk X
71 -3
x
where the summation of the momentum runs over
2m__ 4

_ 1 3
—V (m+§d), for meZ }

More singulard-periodic solutions can be generated from the Green'’s immdty introducing the
harmonic polynomials

Pd:{keR3 kK =

Dhim(X) = Yim(R) , 1 =[x, (2.3)
and defining

Gitn(X, P?) = &m(0)G (x, p?) .
In Eqg. (2.3) the notatio represents the solid angle parametésp) of x in spherical coordinates.

It was proved in Ref. [1] that thelm(x p?) are complete and linearly independent. Therefore
@wm(X) can be expanded in terms@f’m (x, p?) as

@m(X) = Zmel"m(x, p?), for R<|x|<L/2.
.m

As given in Ref. [2], Glm(x p?) can be expanded in terms of the spherical harmovig&)
and spherical Bessel functiofg pr) andn;(pr) through

—1\! R
Gih(x, %) = gl {v'm<x>n|<pr>+ S (P (% m(pr)} ey
1
Due to symmetry considerations, som/qml,m p) vanish. For the MF2d = e; + &), we list all
the non-zero values o3, ., (p) for I,I’ = 0,1 in Table 1. There we expand/ |, (p) in terms
of the modified zeta functlon, which is defined by
*(n) pL
ZhsP =y o =2
" wep, (NP =" 7 21

This zeta function is formally divergent and needs to bewditally continued. Ref. [2] gives a
numerically calculable expression @£ (1;02), which is not, however, valid for the MF2. Here
we give a more general expression that can be used in all ffieeedit MFs

PN 2 udil gy Ty, T3 | myu)?
Z3LP) =y [ déf UGZZ#O( D it g, (- 200 (5) ¥ 2exp— L)
v/ dt(é —1—6 Omo (- T)32 — yméiodng

2
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Im | I'n )
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10 | 10 | 29(L;?) + 2\‘*/5 Z8(L:P)
11] 11 | Zo(Laf) - ﬁff (1;6%)
1) 1) ZeLid?) - (L)
11 1 ?‘5 73(1;¢P)

11| -

Table 1. ‘/ll(rjn,l’r’r'( expanded in terms o9 (1;¢?) for I,I’ = 0,1. The notatiomn= —mis used.

3. Deformed symmetry

We introduce the groufs as the set of all lattice rotations and reflectiéhthat leave the set
of Py invariant,
G={R|RkePy, VkePy}. (3.1)

Let .%# be the space of ati-periodic wave functiongy(x). For anyy(x) € 2 andR e G, the
transformed wave functioRy(x) = (R x) satisfies

WR™) = 5 unPin(RIDC 0 P) = 5 DR (VG () €. (32)
m I,m,mf

This shows that?Z (or equivalently the two-particle system) is closed untlergroupG. D (R
used in Eqg. (3.2) is the standard finite-dimensional rotatiatrix. It originates from

|
R%m(X) = Zm(R 1x) Z DY (R) oy (X) .

If we consider a vector spac#{ in which the harmonic polynomial&j,(x) form an orthonormal
basis, theerL%(lQ) is simply an irreducible representation (irrep) of the tiotzal groupO(3),
which describes the group elemerss O(3) in terms of linear transformations acting on the
vector spaces. If we restrictRtoRe G, thenDS])m(IQ) is reducible and the vector spagé can
be further decomposed to sub-spaces that are invariant Ghde

In the case ofl = 0 (y = 1), G is given by the full cubic grou®;. For the MF cases, the
constraint in Eq. (3.1) excludes some lattice rotations @rigl reduced to a subgroup 6. One
can prove that Eq. (3.1) is equivalent to

G={ReOy|Rd=d or Rd=-d},

indicating that ford # 0 G is the parity doubled little group & = (271/L)d. This is the group of
rotations that leave the specific directidmunchanged combined with reflectionschf

In the MF2,G is given by the orthorhombic group,,, which has 8 one-dimensional irreps:
A*, BT, By andB3. The indext comes from parity, which fixes the transformation behavior o
@m(X) under reflectiong — —x. !

1with the change of coordlnate(§ = 2 (X1 +X2), x’2 = %(xl —X2) andx’l = X3, the notations of the irreps used
here coincide with the ones used in Ref. [4], chapter XII.
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In general, we denote the irreps@fasl’. As we mentioned, the spacé, which is invariant
underO(3), can be decomposed into the irreducible sub-spa¢geof Doy,. For brevity, we rep-
resent these decompositions by only the indicelsafdl". Forl = 0,1,2 the decompositions are
given by

| =0 decomp A",
| =1 decomp B, ®B, ®B;,
| =2 decomp A"®&A"$B @B ¢ B] .
The corresponding basis polynomials.4f can be written ad™, a;1,n), wherea runs from 1 to

dr, the dimension of’, andn runs from 1 toN(I", ), the total number of occurrences [ofin the
decomposition of the spack{. The relation betweeli, a;I,n) and%im(X) is written as

I N(rvl) dl'
\r,a;l,n> = Z Clr,a,n;m@lm(x) ) @|m(X) = Z z z Clr*,a,n;m‘rva;hm )
m=—| n=1 a=1

where the coe]‘fi(:ients'm”];m form a (2l +1) x (21 +1) matrix C satisfyingCITQ =1. We list
I, a;1,n) in terms of%,(x) for | = 0,1 in Table 2.

T, a;l,n) in terms of%{m, (X) in terms of polynomials
AT,1,0,1) Doo(X) N

B, L;11) | —5194:(x) + L 45(x) 2 (xa+%)

By L1 | —HPu0+ 5200 | E )
B;,1;1,1) io(X) X

Table2: |I',a;1,n) expanded in terms & (x) for | = 0,1. The notatiorm= —mis used.

The matrixD!) (R) can be diagonalized through

D)
cpich = D(M2)

whereD("(R) is the matrix representation @, for the irrepl. It gives the action of the group
elementR € G in terms of linear transformations on the vector spaieas follows

R, a;1,m) = DYJ(R)IT, B;1.n) .
From inspecting Egs. (2.4) and (3.2), it can be seen that ﬁteixn//,’;’nﬁl,m transforms as

/5 1) 5 5
> Die(R)- Ay = Z///I%I@Dg’n)f(R) ; VReG.
S

According to Schur’'s lemma, we then have

Clr,a,n;m///I%I’n"{Clr’*,aﬁn’;m = d’,r/aa,G/MI%,l/n’(r) . (3.3)
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Using the projection operator

Fro=r- Y Daa(RR, No=3 1,
ReG ReG
we can projectxm(X) to thel” representation throug¢g,*\,°|’ (x) = FAﬂ—,aqz;M(x). Following from the
orthogonality theorem
dr

r ANk r =
> DYARIDYY (R) = & uarBp
G ReG

one can prove that

N(T )
I, | | 2
%I\?(X) = Z Z Vlmcriam;mcﬂmn;n"{Glm’(X7p)
I,mm n=1

= va {r-'|r,a;|,n>n|<pr>+ > Mﬁ],lfn/<r>r-"|r,a;I',n’>jv<pr>} (3.4)
n 7,
where the coefficients;, are defined as

1

|
I+1 K3
47T p z VImCr o nm -

m=—I|

‘7In =

4. Finite-size formulae

In Eq. (3.4), we have expande;é,;j‘l’(x) in terms of the singulad-periodic solutions of the
Helmholtz equation. In the exterior region, it can also bpagxed in terms of the spherical har-
monicsYjm(X) and spherical Bessel functiofg pr) andn(pr) as

@i (x) = > binYim() (a1 ()1 (PF) + A1 (P (P1)) (4.2)

It was proved in Ref. [1] that there exists a unique eigernioncof the Hamiltonian in the infinite
volume which coincides wit r,’\jl’ (x) in the exterior region. As a result, the coefficieot$p) and
Bi(p) in Eq. (4.1) can be related teth wave scattering phask(p) through

26 (p) _ ai(p) +iA(p)
ai(p) —iBi(p)

Egs. (4.1) and (3.4) together determine the coefficibpithat make the two expansions@,’\f (x)
coincide. Writingbim asbim = Sp, 5|nc'r7a7n;m, Eqg. (4.1) can then be written as

@i (x) = ;Ennr*'\r,a:l,m<a|<p>j.<pr>+B|<p>n|<pr>> .

We therefore get the relation betweip andby, as

BInBI (p) = ‘7In s

6Inal(p) = Ol’n’Ml?nQIn(r) .

/

5
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This homogenous system has a non-trivial squtioB"oany when the determinant of the coeffi-
cient matrix equals zero, which results in

det[§ —~M4M)] =0, &nyw = rduntan t&(p). (4.2)

If we consider only the lowest angular momentum contributio Eq. (4.2), then the finite-size
formulae are given by

tan ! &p(p) = M8101(A+) ;
tan_lél(p) = Mngl(r) ’ for ' = BI> BE? Bg :

Using Tables 1, 2 and Eq. (3.3), we can descM‘,ﬁr’g,,n,(F) in terms ofa@ﬁg](l;qz)

Mg1o1(AT) = (ym®2q)~t 2

My 10(85) = (yr%0) 2~ T oy 1V 2 )
M3 14(8,) = (yr%) () - ‘jfffzo )
2q°

M1L11( 3) = (ym®2q) M 25+ %%)-

V5

Thus we obtain the finite-size formulae in the MF2 for thesE = A", B, B, andB;.

5. Conclusion

The finite-size formulae for a new MF with total momentére= (271/L) (e, + e2) are derived
in this work. These formulae can be used to calculate the \®&wad P-wave scattering phases.
Using similar procedures to those in this work, one can yagheralize the derivation to other
MFs and different irreps.
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