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1. Introduction

In Quantum Chromodynamics, the current theory of the strong force, many states do not ap-
pear directly in scattering experiments, but only indirectly in the behaviour ofthe scattering cross
sections of observable particles. This is because these states, known asresonances, are unstable
and decay in a very short time relative to the scattering experiment. Extractingthe decay widths
and masses of these states is thus an important theoretical challenge.

Lattice Field Theory provides a possible way of extracting these resonance parameters in a
non-perturbative fashion. The typical method for extracting particle masses in lattice field theory is
to study the decay of a correlator with the same quantum numbers as the particlein question. The
large-time behaviour of the correlator is then

lim
t→∞

C(t) = Ze−mt , (1.1)

wherem is the mass of the lightest particle with the chosen quantum numbers, which can be ex-
tracted by fitting the correlator. This method however will not work for resonances. By virtue of
being unstable, resonances are above the multiparticle threshold in their channel and never domi-
nate the behaviour of the correlator in a simple manner. Fundamentally resonances are not energy
eigenstates of the Hamiltonian, but rather poles of the S-matrix and so are a truly dynamical phe-
nomena.

Given their relation to dynamical scattering processes, resonance parameters can be found
using the scattering phase shiftδ (p). The difficulty lies in obtaining information aboutδ (p) on
a Euclidean lattice. In Ref [1] it was discovered that there is a connection between the behaviour
of the two particle energy spectrum in finite volume and the scattering phase shift δ (p). Hence
provided one can accurately determine the energy spectrum it should be possible to obtainδ (p)
and through it the resonance parameters. Recently another method has been proposed in Ref [2].
This method takes the intuition gained from Lüscher’s method to construct a probability distribution
which measures the relative frequency of energy levels in the interacting case (resonance present)
and the noninteracting case (no resonance); we will refer to this method asthehistogram method.
It can be shown that the parameters of this probability distribution are fundamentally related to
the parameters of the resonance. Furthermore, the method provides a visual tool. The resonance
should manifest itself as a peak in the distribution.

Our first discussion on this topic, with an historical introduction and a basic theoretical back-
ground, can be found in Ref [3]. In this work we aim to compare and contrast these two methods.
In particular we analyse how accurately resonance parameters can be extracted using both methods
and also the ambiguity in applying the two methods. A first attempt to test the histogram method
on a simple one dimensional model can be found in Ref [4].

2. Theoretical background

2.1 Two particles in a box

In the continuum, two identical non-interacting bosons of massmπ characterised by a relative
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momentum~p, in a box of volumeV = ∏3
i=1 Li, have a total energyE given by

E = 2
√

m2
π +~p2 ; (2.1)

where due to the finite volume, the momentapi are given bypi =
2π
Li

ni with ni ∈ Z. On the lattice
the space-time discretization can have a strong effect (see Figure 1) in particular when the volume
is small (large momentum) andmπ is big. The correct expression for the simplest discretisation of
the free scalar field is

E = 4sinh−1
[

1
2

√

m2
π + p̃2

]

, (2.2)

where ˜pi = 2sin π
Li

ni. It is also valuable to use this expression to describe the energy of interacting
particles as we will show.

In a general case such as QCD, where
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Figure 1: The total energyE for four different levels in the
continuum (black lines) and in the lattice (red lines) case
versusL.

an expression like Eq. 2.2 is not available,
we need to determine the non-zero-momentum
single-particle energy levels numerically and
then, to determine the two-particle energy
spectrum, simply multiply the results by a
factor of two.

We will focus on the case of a cubic
lattice, characterised by a single side length
L; moreover, in a cubic box ifn2 = ∑3

i=1 n2
i

is fixed, degenerate energy levels for dif-
ferent values ofni can appear.

In Figure 1 we show a plot of the two
formulas where it is evident that for small
volume (L . 15) and a massmπ = 0.46 the
two spectra are very different; therefore we cannot use the continuumformula to describe our
Monte Carlo results.

2.2 Avoided level crossing

Let us introduce another particleσ in the box (at the moment, not interacting) with massmσ ;
we are interested in studying theelastic scattering between theπ particles therefore we impose
the constraint 2mπ < mσ < 4mπ . In Figure 2 (Left) theσ energy level is the horizontal line that
intersects the two-particle levels at various system sizesL.

In Minkowski space if we introduce a three point interactionσππ between the fields, theσ
can be unstable and decay into twoπ-particles. In Euclidean space and in a finite volume the
scenario is different; because of the interaction, the energy eigenstatesare a mixture ofσ and 2π
Fock-states and they are all stable. The mixing is manifested in avoided level crossings (ALCs) in
the energy levels as shown in Figure 2 (Right).

2.3 Lüscher’s method

The best known method for analysing resonances was proposed by Lüscher (Ref [5]). This
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Figure 2: (Left) The spectrum of a system of two non-interacting particles of massmπ = 0.4544 worked
out using Eq. 2.2; the horizontal line describes the particle σ at rest with massmσ = 1.3517. With these
parameters the intersection betweenσ and the two-particle leveln2 = 1, i.e.(1,0,0), is set atL = 12. (Right)
Avoided level crossings where on the (Left) there were intersections betweenσ and 2π.

method involves using information on the scattering phase shift. Since the scattering phase shift
contains information on resonance parameters this provides a way to extract the resonance mass and
width. The scattering phase shift itself can be obtained using the relationshipfound in (Ref [1]).
In essence, this relationship provides a mapping between the values of the two-particle energy
spectrum in finite volume and the scattering phase shift in infinite volume.

The relationship is proven first in non-relativistic quantum mechanics It then holds in quantum
field theory as the relativistic case can be cast in a non-relativistic form, withthe Bethe-Salpeter
Kernel playing the rôle of the potential. This is achieved by means of an effective Schödinger
equation, first constructed in (Ref [6]). The precise relationship is1

δ (p) =−φ(κ)+πn , (2.3)

tan(φ(κ)) =

(

π3/2κ
Z00(1;κ2)

)

, κ =
pL
2π

, (2.4)

wherep is the relative momentum between the two pions.Z js(1;q2) is a generalised Zeta function,
given by

Z js(1;q2) = ∑
n∈Z3

r jYjs(θ ,φ)
(n2−q2)s , (2.5)

whereYjs(θ ,φ) are the spherical harmonics. Eq. 2.3 is known as Lüscher’s formula.

To obtain resonance parameters using this relationship one proceeds as follows:

1. Through Monte Carlo simulations, obtain the two particle energy spectrumEn(L) at different
volumes;

2. Through dispersion relations obtain a momentum from the energy spectrum, pn(L);

1In truth the relationship is more general than this, the formula quoted here isfor the spin-0 channel, which is the
only one relevant here.
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3. Through Eq. 2.3pn(L) gives a value forδ (pn(L));

4. By repeating this procedure for several energy levels and volumes,one obtains a profile of
δ (p);

5. This profile ofδ (p) is then fitted against the Breit-Wigner form for the scattering phase shift
in the vicinity of a resonance:

δ (p)≈ tan−1
(

4p2+4M2
π −M2

σ
Mσ Γσ

)

. (2.6)

This fit should give the resonance massMσ and widthΓσ .

The work in this paper applies this method to the theO(4) model in the broken phase and also
compares its performance against a more recent proposal.

2.4 Histogram method

An alternative method to determine the parameters of a resonance is based ona different way
to analyze the finite volume energy spectrum (Ref [2]). The basic idea is to constructthe probability
distributionW (E) according to the prescriptions:

1. Measure the two-particle spectrumEn(L) for different values ofL and forn = 1, · · · ,N levels;

2. Interpolate the data with fixedn in order to have a continuum functionEn(L) in an entire
rangeL ∈ [L0,LM];

3. Slice the interval[L0,LM] into equal parts with length∆L = (LM −L0)/M;

4. DetermineEn(Li) for eachLi (i = 0, · · · ,M);

5. Choose a suitable energy interval[Emin,Emax] and introduce an equal-size energy bin with
length∆E;

6. Count how many eigenvaluesEn(Li) are contained in each bin;

7. Normalize this distribution in the interval[Emin,Emax].

Actually, the distribution considered in Ref [2] isW (p) but this does not have an important
effect on our analysis; as a matter of fact, the relation between them is:

W (p) =W (E)

(

∂E
∂ p

)

, (2.7)

where the correct dispersion relation we should use is Eq. 2.2; the multiplicative term will not
modify the Breit-Wigner shapenear the resonance.

It is possible to show that the probability distributionW (p) is given byW (p)= c∑N
n=1 [p

′
n(L)]

−1

and differentiating the Lüscher formula with respect toL, it turns out (c is a normalization constant):

W (p) =
c
p

N

∑
n=1

[

Ln(p)+
2πδ ′(p)

φ ′(qn(p))

]

. (2.8)
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The authors of Ref [2] introduceW0(p), which is determined by Eq. 2.8 withδ (p) = 0 andLn(p)
corresponding to the free energy levels: they show that in order to subtract the background (freeπ
particles) it is convenient to consider the subtracted probability distributionW̃ (p) =W (p)−W0(p).

Using convenient approximations in the Lüscher formula and in the limit of infinitenumber of
energy levels (infinite volume) it turns out:

W (p)−W0(p) ∝
1
p

(

δ (p)
p

−δ ′(p)

)

. (2.9)

This last quantity is determined byδ (p) alone and close to the resonance, assuming a smooth
dependence onp for the other quantities, it follows the Breit-Wigner shape of the scattering cross
section with the same parameters:

W (p)−W0(p) ∝
1

[E(p)2−M2
σ ]

2+M2
σ Γ2 . (2.10)

In Ref [2] this method is tested onsynthetic data produced using the Lüscher formula by
experimentally measured phase shifts. The main task of our work is to test this method on an
effective field theory where a resonance emerges, producing data bylattice simulations.

3. The model

The model we have used in our simulations is essentially theO(4) model in the broken phase.
This model has previously been used to test Lüscher’s method (Ref [7]). The Lagrangian is the
following:

L =
1
2

∂φi∂φi +λ (φ2
i −ν2)2−m2

πνφ4 , with i=1,2,3,4. (3.1)

The term proportional toφ4 is introduced to break explicitly the symmetry and therefore to give
mass to the three Goldstone bosons. To understand the meaning of the terms and the parameters in
the Lagrangian, we first introduce the new fieldsσ andρi (with the constraintρiρi = 1):

φi = (ν +σ)ρi , with i = 1,2,3,4 ; (3.2)

then, we expand the potential around the classical minimumφiφi = ν2 (using alsoρi∂ρi = 0):

L =
1
2

ν2∂ρi∂ρi +
1
2

σ2∂ρi∂ρi +
1
2

∂σ∂σ +νσ∂ρi∂ρi

+ λσ4+4ν2λσ2+4νλσ3−m2
πν2ρ4−m2

πνσρ4 . (3.3)

The fieldσ is clearly related to the massive field whereas the four constrained fieldsρi are related
to the three “pions”. There is an easy way to see this based on the treatment of the non-linear sigma
model2; we introduce the pions using an element ofSU(2): U = exp

(

i
f π jσ j

)

, whereσ j are the

2See for example Ref [8] Sec 2.4.3.
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three Pauli matrices andf is the pion decay constant. It turns out that

1
2

Tr
(

∂µU∂µU†) f→∞⇒ 1
f 2

3

∑
j=1

∂µπ j∂µπ j . (3.4)

On the other hand, we can introduce an element ofSU(2) by U = ρ4+ iσ jρ̃ j, with j = 1,2,3 and
the constraintρ2

4 + ρ̃ jρ̃ j = 1; in this case we have:

1
2

Tr
(

∂µU∂µU†)= ∂ρ4∂ρ4+
3

∑
j=1

∂ ρ̃ j∂ ρ̃ j =
4

∑
i=1

∂ρi∂ρi . (3.5)

Comparing Eq. 3.4 and Eq. 3.5 it turns out (f → ∞):

4

∑
i=1

∂ρi∂ρi ≃
1
f 2

3

∑
j=1

∂π j∂π j . (3.6)

Using the same previous approach and the relation Tr(U +U†) it is easy to show that

ρ4 =− 1
2 f 2π jπ j + const (3.7)

We can rewrite the Lagrangian of Eq. 3.3 using Eq.s 3.6-3.7 and introducingπ̃ j = π j
ν
f :

L =
1
2

∂ π̃ j∂ π̃ j +
1

2ν2 σ2∂ π̃ j∂ π̃ j +
1
2

∂σ∂σ +
1
ν

σ∂ π̃ j∂ π̃ j

+ λσ4+4ν2λσ2+4νλσ3+
1
2

m2
π π̃ jπ̃ j +

m2
π

2ν
σπ̃ jπ̃ j . (3.8)

In this expression, it is now evident thatπ̃ j are the pions with massmπ andσ is a massive field
with massmσ = 2ν

√
2λ . It is interesting to note there are two three-point interaction terms, both

inversely proportional toν .

4. Monte Carlo simulation

The theory described by the Lagrangian Eq. 3.1 was simulated using an overrelaxation algo-
rithm for the first three fields followed by a Metropolis update to guarantee the ergodicity and a
Metropolis algorithm for the fieldφ4.

4.1 Single and two-particle spectrum

In order to determine the single particle spectrum we first introduce the partial Fourier trans-
form (PFT) of the four fieldsφi:

φ̃i(~n, t) =
1
V ∑

x
φi(~x, t)e

−i~x~p , pi =
2π
Li

ni , ni = 0, · · · ,Li −1 . (4.1)

7
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The single particle mass is extracted from the zero momentum correlation function (~n =~0):

Ci(t) = 〈φ̃i(~n, t)φ̃i(−~n,0)〉 , (4.2)

in particular withi = 1,2,3 we can determine the mass of theπi particles; withi = 4 we extract the
mass of theσ particle. Because of the different way we update the four fields, it turnsout that the
massmπ is determined with a higher precision thenmσ ; actually, this is not a real problem because
we are mainly interested to a good determination of the “pion” mass.

The two-particle spectrum is measured by introducing operators with zero total momentum
and zero isospin:

O~n(t) =
3

∑
i=1

φ̃i(~n, t)φ̃i(−~n, t) ; (4.3)

we take in accountN−1 different operators, corresponding ton2 = 0,1, · · · ,N−1. A N-th operator,
that clearly has the correct quantum number, is the PFT of the fieldσ (actuallyφ4) with ~p = 0.
To determine the energy levels we use a method, introduced in Ref [9], based on a generalized
eigenvalue problem applied to the correlation matrix functionCi j(t) = 〈OiO j〉, i.e. a matrix whose
elements are all possible correlators between theN operators.

4.2 Numerical results

In order to test the applicability of the two methods for different widths of resonance, we
consider three different sets of parameters. The first set is characterised byν = 1.0, λ = 1.4,
mπ = 0.36. We tuned these parameters to have the intersection between theσ energy level and
(1,0,0) two-particle energy level aroundL = 12. The physical mass for the pion turns out to be
mph

π = 0.460(2). The spectrum (the first 6 levels) was determined for different volumes (8≤ L≤ 19)
and the relative error works out to be in the range 0.5% - 1.0% (see Figure3 (Left)).

8 9 10 11 12 13 14 15 16 17 18 19
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2.5
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E
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Figure 3: (Left) Spectrum of the theory for different values of the volume for the following simulation
parameters:ν = 1.0, λ = 1.4, mπ = 0.36. The dashed lines describe the free two-particle spectrum. (Right)
The interpolated data using a polynomial.

First of all, we interpolate the data for each level using three different polynomials of order 3,
4 and 5 in order to have a relation between the energyE and the side boxL in the entire interval
[8,19] and to provide a way to evaluate the systematic errors in our final results; in Figure 3 (Right)
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we show one of these interpolations. In Figures 3, the dashed lines describing the free two-particle
spectrum are calculated using Eq. 2.2. Here we note that the massmπ in Eq. 2.2 is not thebare
mass. The value measured on the latticemph

π = 0.460(2) is taken as thephysical value; the relation
between them is well-approximated bymph

π = 2sinh−1(mπ/2).
This free spectrum is used to deter-

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
mass

-2e+02

-1e+02

0e+00

1e+02

2e+02
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4e+02

5e+02

fr
eq

ue
nc

y

Figure 4: The probability distributionW̃ = W −W0 ob-
tained by data from Figure 3.

mine the distributionW0 which is then sub-
tracted toW that is obtained from the in-
teracting spectrum. It is important to note
that if the number of levels considered to
plot W in the interacting spectrum areN,
then the number of levels we have to con-
sider in the free spectrum to determineW0

are justN −1.
Using the three previous polynomials

we are able to produce a large number of
data (we fix∆L = 0.001) that we can then
use to get the probability distributionW
described in Sec 2.4 with the correspond-
ing systematic errors; fixing the bin width to∆E = 0.005 we obtain the histogram̃W of Figure 4.
Note that to getW̃ bothW andW0 are worked out from the same range withL ∈ [8,19]. The er-
ror bars in Figure 4 are the results of the systematic errors coming from the histogramW and the
statistical errors coming from the histogramW0.

Clearly, the shape of the histogram in Figure 4 is far from the Breit-Wigner shape; the reason is
related to the fact we are considering only six energy levels but the conclusions of Sec 2.4 are true
only in the limit of an infinite number of levels. Moreover a lot on jumps and spikesare present.
Our task is now to try to improve this result in order to get more information from our raw data.

We investigated the origin of the spikes

8 10 12 14 16 18 20
L

1.0

1.5

2.0

2.5

3.0

E
ne

rg
y

Figure 5: Energy levels of Figure 3 (Right) with the cor-
rect free two-particle spectrum background.

and we understood they are related to a
“wrong” backgroundW0. It is easy to see
that the spikes appear every time there is
the intersection between the six levels of
the interacting spectrum (or of the five lev-
els of the free spectrum) with the extrem-
ities of the volume range (L = 8 andL =

19). Near those two extremities we have
to be careful with what is the correct back-
ground; Figure 5 shows a corrected back-
ground subtraction. In order to correctly
subtract the free background, we lengthen
each free spectrum line. This is done so
that the extremity of that line has an energy equal to that of the extremity of the interacting spectrum
line closest to it. In this way all interacting lines are subtracte correctly ratherthan the subtraction
being affected by the limit of the volume range that we are actually using in our simulations. Using

9
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this procedure to determineW0 we get thecorrect histogram of Figure 6 (Left). Unfortunately, in
Figure 6 (Left) we continue to see a jump forE ≈ 1.35; the origin of it can be understood looking
at Figure 5. There are two extremity lines, one atL = 8 and one atL = 19 (both aroundE ≈ 1.35),
that are without a “background”; actually, in this case the background isthe resonance itself we are
looking for. Therefore, there is no way to avoid the presence of this jump because we do not know
anything about the resonance; the only thing we can do is to completely exclude from our analysis
those two levels, hoping that the resonance can appear. In Figure 6 (Right) we show the probability
distributionW̃ in this last case; now clearly a Breit-Wigner shape appears.

It is now possible to fit these data to Eq. 2.10 to determine the parameters of the resonance;
applying a sliding window procedure around the peak, they turn out to be:Mσ = 1.330(5) and
Γσ = 0.10(5). We have simulated the theory with a second set of parameters, corresponding to a
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Figure 6: (Left) Probability distributionW̃ obtained by data from Figure 5. (Right) Probability distribu-
tion W̃ obtained excluding from the analysis the two levels that in Figure 5 are without a corresponding
background.

larger width: ν = 1.0, λ = 4.0, mπ = 0.56. In this case, we tuned them to have the intersection
between theσ energy level and(1,0,0) two-particle energy level aroundL = 8. The physical
mass for the pion turns out to bemph

π = 0.657(3). In Figure 7 (Left) we plot the spectrum for
6 ≤ L ≤ 20 for the first six levels; the relative error varies in the range 0.05% - 0.2%. If we
repeat all the procedure as described before (in particular we exclude the two levels which are
“without” background) we get the histogram of Figure 7 (Right); also in thiscase we can clearly see
a Breit-Wigner shape and we can fit these data obtaining the following parameters:Mσ = 2.01(2),
Γσ = 0.35(10).

Finally, we have run a third series of simulations with parametersν = 1.0, λ = 200.0, mπ =

0.86. They have been tuned to have the intersection between theσ energy level and(2,0,0) two-
particle energy level aroundL = 10. Because in this case we are considering higher momentum,
we expect the width of the resonance is larger then the previous cases. In this case we take in
account 13 levels to describe better the shape of the resonance. In Figure 8 (Left) the spectrum
for 6≤ L ≤ 15 is plotted; the relative error varies in the range 0.15% - 0.4%. The physical mass
for the pion turns out to bemph

π = 0.938(3). Unfortunately, as it is shown in Figure 8 (Right) the
probability distribution plot is flat, i.e. no Breit-Wigner shape emerges. It is clear that in this case,
the only way to determine the parameters of the resonance is to increase considerably the number
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Figure 7: (Left) Spectrum of the theory for different values of the volume for the following simulation
parameters:ν = 1.0, λ = 4.0, mπ = 0.56. (Right) Probability distributioñW using the correct background
and excluding the two levels that are without a corresponding background.

6 7 8 9 10 11 12 13 14 15
L

2.0

3.0

4.0

5.0

E
ne

rg
y

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
mass

-6e+01

-4e+01

-2e+01

0e+00

2e+01
fr

eq
ue

nc
y

Figure 8: Like Figure 7 but with simulation parameters:ν = 1.0, λ = 200.0, mπ = 0.86.

of measurements and consequently to decrease the relative errors in the spectrum determination.
In Table 1 a summary of our results for the three sets of parameters are shown.

Relative error in E(L) Mσ δ (Mσ )/Mσ Γσ δ (Γσ )/Γσ
0.5%-1.0% 1.330(5) 0.4% 0.10(5) 50%
0.05%-0.2% 2.01(2) 1.0% 0.35(10) 28%
0.15%-0.4% – – – –

Table 1: Results for the three sets of simulation parameters with thecorresponding relative errors.

In applying Lüscher’s method to the data one only needs the original raw data; there is no need
to fit it to a polynomial expression as in the histogram case. The first step is toconvert the data
on the energy spectrum to data on the momentum spectrum. This requires the dispersion relations.
However should it be the lattice or continuum dispersion relations? The lattice dispersion relations
are more natural, since they suppress lattice artifacts, but results were obtained for both below to
emphasise how much more effective they are. In order to usepn(L) and Eq. 2.3 to obtainδ (p),
knowledge ofφ(κ) is needed. The main difficulty here is the cumbersome definition ofZ js(1;q2).
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Figure 9: (Left) δ (p) using Lattice dispersion relations at:ν = 1.0, λ = 1.4, mπ = 0.36. (Right) Same
parameters, but with continuum dispersion relations. Bothdone with our approximation.

Not only that, but as mentioned the summation expansion given above does not even converge in
the region required. A more convenient definition is an integral representation ofZ js(1;q2) given
in Appendix C of Ref [1]. This expression can be used to numerically evaluateZ js(1;q2). Some
data on the values ofφ(κ) can then be obtained from Eq. 2.4. We fittedφ(κ) against these values
to obtain an approximation of

φ(κ)≈ (−0.09937)κ8+(0.47809)κ6 (4.4)

+(−0.62064)κ4+(3.38974)κ2

The error between this approximation andφ(κ) is negligible compared with other errors.

From here we use Eq. 2.3 to obtain a profile ofδ (p). For the narrow case one can see the
difference between use of the continuum dispersion relations and the latticedispersion relations
in Figure 9. The lattice dispersion relations provide a tighter fit of the data, aswell as having

Results
Parameters φ(κ) πκ2

ν = 1.0, λ = 1.4 Mσ = 1.35(2) Mσ = 1.36(4)
Γσ = 0.115(8) Γσ = 0.17(2)

ν = 1.0, λ = 4 Mσ = 2.03(2) Mσ = 2.2(2)
Γσ = 0.35(2) Γσ = 0.42(5)

ν = 1.0, λ = 200 Mσ = 3.1(7) Mσ = 3(1)
Γσ = 1.2(5) Γσ = 2(1)

Table 2: Resonance mass and decay width using two different approximations forφ(κ).

smaller errors. We also compared the use of the traditional approximation ofφ(κ) = πκ2 with
our approximation. After fitting, the results for the resonance mass and decay width in the two
approximations are (both using lattice dispersion relations) shown in Table 2.

The errors are smaller when the approximation of Eq. 4.5 are used, particularly for the broad
resonance. It should also be noted that the two approximations effect thetwo resonance parameters
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differently. The dispersion relations have a more direct effect onMσ while the approximation of
φ(κ) has a greater effect onΓσ . This is because a cruder approximation ofφ(κ) effects the profile

Results
Parameters Lüscher’s Method histogram method
ν = 1.0, λ = 1.4 Mσ = 1.35(2) Mσ = 1.33(5)

Γσ = 0.115(8) Γσ = 0.10(5)
ν = 1.0, λ = 4 Mσ = 2.03(2) Mσ = 2.01(2)

Γσ = 0.35(2) Γσ = 0.35(10)
ν = 1.0, λ = 200 Mσ = 3.1(7) Mσ = N/A

Γσ = 1.2(5) Γσ = N/A

Table 3: A comparison between the Lüscher and the histogram method.

of the scattering phase shift, which is related to the decay width. These results suggested it is
optimal to use the lattice dispersion relations and our approximation.

4.3 Comparison between the two methods

The results for Lüscher’s method compared with the histogram method are shown in Table 3.
Lüscher’s method gives smaller errors

0.5 1
p

-2.0

-1.0

0.0

1.0

2.0

δ(
p)

Data
Fit

Figure 10: Inelastic data with Lüscher’s formula. For
the case ofν = 1.0, λ = 1.4. (Onset of inelastic region
marked).

than the histogram method, but the results
are broadly consistent. Lüscher’s method
manages to provide some estimate on the
width of the resonance in the broad case.

The broad resonance becomes a prob-
lem for the histogram method because there
is no obvious peak to indicate the reso-
nance mass (and hence no width of that
peak to determine the decay width). One
would need very precise data in order to
avoid a washing out of the structure of the
histogram. Lüscher’s method also becomes
more difficult to apply in the case of broad
resonances. In the case of a broad reso-
nance the profile ofδ (p) is quite flat, hence a large range of parameters will be capable of fitting to
the profile. Again an accurate determination of the energy levels is requiredto determine the pro-
file precisely enough so that this is prevented. Considering the amount of work necessary before
one can use the histogram method (as detailed above), Lüscher’s method isconsiderably easier to
apply, provided one has a good approximation ofφ(κ). However, the histogram method can be
used as a visual tool for spotting the resonance.

One restriction of Lüscher’s formula is that it only applies in the elastic region. An example
of what happens in the inelastic region is provided in Figure 10. It is possible that the histogram
method will provide a means of determining the presence of a resonance in theinelastic region.
Certainly a histogram can be constructed in the inelastic region, the only difficulty is that with the
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inapplicability of Lüscher’s formula it is unclear that the parameters of this histogram will have
any relation to those of the resonance.

5. Conclusions

We have compared and contrasted the Lüscher and the histogram methods. Lüscher’s method
appears to both easier to apply and give smaller errors, however the histogram method does give
results consistent with Lüscher’s method and does indeed visually indicate the presence of a reso-
nance.

There are two major difficulties with both methods. First for broad resonances the relevant
structure is washed out to some degree. For a histogram, the peak is hard tolocate, while for the fit,
the profile of the phase shift is poorly constrained. Secondly there is the inelastic region. Lüscher’s
formula cannot be used there. The histogram method can be applied to the data, but there is no
argument that this is a sensible thing to do. There is also a difficulty in the general case, relevant
to QCD, which has not been examined here. In the model above the resonance is clearly present in
the channel, since this is an explicit feature of the Lagrangian of the model. In general however a
resonance may not be so obvious and there is no reason a priori to expect that it will have a purely
Breit-Wigner form.
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