
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
0
6

Study of the scalar charmed-strange meson
D∗

s0(2317) with chiral fermions

M. Gong∗†

Dept. of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA
E-mail: gongming@pa.uky.edu

A. Li
Dept. of Physics, Duke University, Durham, NC 27708, USA
E-mail: anyili@phy.duke.edu

A. Alexandru
Dept. of Physics, George Washington University, Washington, DC 20052, USA
E-mail: aalexan@gwu.edu

Y. Chen
Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
E-mail: cheny@ihep.ac.cn

T. Draper
Dept. of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA
E-mail: draper@pa.uky.edu

K.F. Liu
Dept. of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA
E-mail: liu@pa.uky.edu

The recently discovered charmed-strange meson D∗
s0(2317) has been speculated to be a tetraquark

mesonium. We study this suggestion with overlap fermions on 2+1 flavor domain wall fermion
configurations. We use 4-quark interpolating operators with Z4 grid sources on two lattices (163×
32 and 243 ×64) to study the volume dependence of the states in an attempt to discern the nature
of the states in the four-quark correlator to see if they are all two-meson scattering states or if one
is a tetraquark mesonium. We also use the hybrid boundary condition method for this purpose
which is designed to lift the two-meson states in energy while leaving the tetraquark mesonium
unchanged. We find that the volume method is not effective in the present case due to the fact that
the scattering states spectrum is closely packed for such heavy states so that one cannot separate
out individual scattering states since the volume dependence is skewed as a result. However, the
hybrid boundary condition method works and we found that the four-quark correlators can be
fitted with a tower of two-meson scattering states. We conclude that we do not see a tetraquark
mesonium in the D∗

s0(2317) meson region.
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1. Introduction

A charmed-strange meson D∗
s0(2317) has been found in recent years [1, 2]. Its mass is

2317.8±0.6 MeV, which is significantly lower than the one predicted from the quark model [3, 4].
This discrepancy has prompted speculations that D∗

s0(2317) is a DK molecule [5], a four quark
state [6], or a dynamically generated bound cs̄ state through the coupling to the nearby DK thresh-
old [7].

Lattice QCD is a powerful tool used to calculate the hadron spectrum from first principles.
Some earlier works were done with dynamical lattice QCD for the cs̄ meson [8, 9, 10, 11], but the
puzzle is not settled since the results are significantly different than the experimental mass. A recent
calculation [12] with overlap fermion on 2 + 1 flavor domain-wall sea gives a mass of 2304± 22
MeV which is consistent with the experimental value. Presumably, this is largely due to the fact
that the overlap fermion has much smaller O(m2a2) error than the other fermion formulations and
is suitable for both light and charm quarks [13]. This result suggests that the D∗

s0(2317) is just the
scalar cs̄ meson.

In this article, we shall study this meson to see if it can be a tetraquark mesonium as suggested
in the literature [5, 6]. We calculate the spectrum with 4-quark interpolating operators and look for
evidence of a 4-quark state.

2. Strategies for the computation

2.1 Overlap valence fermion on domain-wall sea

The overlap fermion action obeys chiral symmetry at finite lattice spacing and is, thus, free
of O(a) errors. It is shown that the effective quark propagator of the massive overlap fermion has
the same form as that of the continuum [14]. The O(m2a2) error, which is important in the charm
region, is estimated to be small on quench lattices [15, 13] and even smaller on the dynamical
domain-wall sea [12] due to HYP smearing. Thus, it is shown that it can be used for both charm
and light quarks on the 243 ×64 lattice DWF configurations [16].

We use the valence overlap fermion on N f = 2+1 domain wall dynamical configurations from
the RBC and UKQCD collaborations [17]. This is a mixed action approach. Since the valence is
a chiral fermion, only one extra low-energy constant ∆mix needs to be determined [18, 19], which
turns out to be small [16].

2.2 The Z4 grid source

We introduce Z4 grid sources to gain more efficiency. A Z4 grid source is defined as:

η (⃗x) = ∑
i⃗∈G

θ (⃗i)δ⃗x,⃗i (2.1)

where G is a sparse grid of lattice sites on timeslice t = 0, and θ (⃗i)∈ {1, i,−1,−i} is the Z4 random
phase on site i⃗.

∗Speaker.
†For the χQCD Collaboration.
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Figure 1: A sketch of the correlators with Z4 grid sources. a) Left panel represents the first term in Eq. (2.4)
which is a signal. b) Right panel represents the second term in Eq. (2.4) which is a noise.

The corresponding quark propagator is:

G(⃗y,η) = D−1(⃗y, x⃗)η (⃗x)

= ∑
i⃗∈G

θ (⃗i)D−1(⃗y, x⃗)δ⃗x,⃗i = ∑
i⃗∈G

θ (⃗i)G(⃗y,⃗ i) (2.2)

And the anti-quark propagator is:

G(η , y⃗) =
(
D†−1(⃗y, x⃗)η∗(⃗x)

)∗,Td ,Tc

= ∑
i⃗∈G

θ (⃗i)G(⃗i, y⃗) (2.3)

where the Td and Tc are transpose operations on dirac space and color space respectively.
On space-time dimensions with implicit color and dirac indices, all connected 4-quark corre-

lation functions have the form:

C(⃗y,η) = Tr ⟨Γ1G1(⃗y,η)Γ2G2(⃗y,η)Γ3G3(η , y⃗)Γ4G4(η , y⃗)⟩

= ∑
i⃗1 ,⃗i2 ,⃗i3 ,⃗i4∈G

θ (⃗i1)θ (⃗i2)θ (⃗i3)θ (⃗i4)Tr
⟨

Γ1G1(⃗y, i⃗1)Γ2G2(⃗y, i⃗2)Γ3G3(⃗i3, y⃗)Γ4G4(⃗i4, y⃗)
⟩

= ∑
i⃗∈G

Tr
⟨

Γ1G1(⃗y,⃗ i)Γ2G2(⃗y,⃗ i)Γ3G3(⃗i, y⃗)Γ4G4(⃗i, y⃗)
⟩

+ ∑
i⃗1 ,⃗i2 ,⃗i3 ,⃗i4

∈G
not equal

θ (⃗i1)θ (⃗i2)θ (⃗i3)θ (⃗i4)Tr
⟨

Γ1G1(⃗y, i⃗1)Γ2G2(⃗y, i⃗2)Γ3G3(⃗i3, y⃗)Γ4G4(⃗i4, y⃗)
⟩

(2.4)

where the Γ’s are γ matrices.
The second term is stochastically eliminated with many gauge configurations and/or many

noise sources. In this limit, the correlator is a good approximation of the sum of many correlators
with point sources. Figure 1 shows the different diagrams of the two terms.

2.3 Hybrid spatial boundary condition

Both 2-meson states and the possible 4-quark state are present in Eq. (2.4) and it is difficult to
distinguish them, so we adopt the hybrid spatial boundary condition to help in this regard [21].
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If we use the periodic spatial boundary condition, the available momenta on quark propagators
are in the set P = {0,±2π

L ,±4π
L , . . .}. On the other hand, if we use the anti-periodic spatial boundary

condition, the available momenta on quark propagators are in the set A = {±π
L ,±3π

L , . . .}. We
calculate the quark propagators with the periodic spatial boundary condition while calculate the
anti-quark propagators with the anti-periodic spatial boundary condition. With this hybrid spatial
boundary condition, the momenta of mesons are each in the set P + A = A while the momenta of
4-quark state are in the set 2P+2A = P. The lowest momentum of a 4-quark state is (0,0,0), while
the lowest momentum of a qq̄ meson state is lifted to (±π

L ,±π
L ,±π

L ).
The D∗

s0(2317) state is about 45 MeV lower than the DK threshold. If D∗
s0(2317) is a tetraquark

mesonium, it would remain at its position when the hybrid boundary condition is imposed as com-
pared to the periodic condition. On the other hand, the DK threshold will be shifted up by 177
MeV on the 243 ×64 lattice, making it easier to identify the tetraquark mesonium state.

3. Simulation results

3.1 Simulation parameters

We use the N f = 2+1 domain wall dynamical configurations from RBC and UKQCD collab-
orations. The lattice sizes are 163 ×32 and 243 ×64 with lattice spacing 1/a = 1.73(3) GeV. For
each ensemble, we use 37 configurations.

The propagators are calculated with the multimass algorithm with masses ranging from 0.00140
to 0.70. For this case, the mass of u/d quarks is set to 0.0135, the corresponding mπ is 310 MeV
which is near the u/d quark mass in the sea. The strange quark mass is set to 0.067 and the charm
quark mass is set to 0.68. The grid spacing of the source is set to 8 on spatial dimensions. We have
one Z4 grid source per configuration.

3.2 The interpolating operators and possible states

The 4-quark interpolating operator we use is c̄αγ5uα ūβ γ5sβ . It has the quantum number of
D∗

s0(2317) except with isospin I = 1.
The correlation functions contain DK scattering states, Dsπ scattering states, a possible tetraquark

state, and other higher states.
The data are not good enough to determine the ratio of the spectral weights of the DK scattering

states and the Dsπ scattering states exactly and the fitting results suggest that the spectral weights
of DK states and the Dsπ states are of the same order. Therefore, we assume that all the scattering
states have the same spectral weight. We propose to check the assumption carefully with open-jaw
diagram calculations in the future.

The length of the time dimension of the 163 × 32 lattice is relatively small, and therefore the
wrap-around states cannot be neglected. If the meson-meson interaction is neglected, the correla-
tion functions of the wrap-around states have the form:

C(t) = W
(

e−E1t−E2(T−t) + e−E2t−E1(T−t)
)

(3.1)

In this case, the spectral weights of the forward propagating 2-meson scattering states and the
wrap-around states are the same. Considering the states and the assumptions mentioned above, we
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Table 1: Fitted results
Lattice χ2/d.o. f . ∆Ea W E ′a W ′

163 ×32 Periodic 0.463 0.0040(64) 1.07(6)×10−7 2.26(3) 1.83(24)×10−4

163 ×32 Hybrid 1.074 0.0037(64) 2.02(1)×10−7 2.23(9) 1.71(82)×10−4

243 ×64 Periodic 1.264 −0.0019(40) 1.74(1)×10−7 2.18(3) 2.83(32)×10−4

243 ×64 Hybrid 0.946 −0.0072(41) 1.87(9)×10−7 2.27(9) 3.62(166)×10−4

construct a model for the fitting of our data:

C(t) = CDsπ(t)+CDK(t)+Cwrap
Dsπ (t)+Cwrap

DK (t)+CT (t) (3.2)

In this model, the 2-meson scattering states, the 2-meson wrap-around states, and the 4-quark state
are:

CAB = W ∑
p∈P/A

e−(EA(p)+EB(−p)+∆E)t

EA(p)EB(−p)
+(t ↔ T − t) (3.3)

Cwrap
AB = W ∑

p∈P/A

e−EA(p)t−EB(−p)(T−t)

EA(p)EB(−p)
+(t ↔ T − t) (3.4)

CT (t) = W ′e−E ′t (3.5)

where the "AB" can be "DK" or "Dsπ" and the particle energy of A or B is EA/B(p) =
√

m2
A/B + p2.

The momentum p is summed over the corresponding set of momenta. We have calculated with both
the original periodic spatial boundary condition and with the hybrid spatial boundary condition.

In the model, the qq̄ masses are input from fits of the single meson correlation functions. We
have four parameters to fit in the model. The W in Eqs. (3.3) and (3.4) is the spectral weight of
all the scattering states and wrap-around states, the ∆E in Eq. (3.3) is the mean effective energy
of meson-meson interactions, and E ′ and W ′ in Eq. (3.5) are the mass and the spectral weight of a
possible tetraquark state respectively.

3.3 Fitted results

The fitted results are tabulated in Table 1.
We note first that ∆E is consistent with zero, which suggests the meson-meson interactions

do not play an important role and can be neglected. We note that on the 243 × 64 lattices, the W
fitted from hybrid boundary condition coincides with that from periodic boundary condition. This
confirms that our assumption on the fitting model are reasonable. On the 163 × 32 lattices, the W
fitted from periodic and hybrid boundary condition do not agree with each other. We suspects that
it is due to the finite volume effect with smaller time extent.

The fitted E ′ are all larger than 3.7 GeV. We tried to fit it with a shallow constraint around
2.3 v 2.4 GeV, but we cannot find a state there. Therefore, the fitted E ′ shows the effects of higher
states and there is no 4-quark state near D∗

s0(2317).
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Figure 2: The ratio of the correlation functions (C163/C243 ) with periodic/hybrid boundary condition.

3.4 The volume dependence

Another method [22] to distinguish the tetraquark mesonium and the scattering states is the
volume dependence. The spectral weight of a single-particle state has little volume dependence
while that for a two-particle scattering state exhibits a 1/L3 behavior.

We have tried this method and find that it is not a good criterion for our case. In the charm
region, there are towers of scattering states with small energy gaps. We cannot separate the states
and the volume dependence of the correlation functions becomes very complex. Figure 2 shows
the volume dependent behaviors of many states. The horizontal axis is time and the vertical axis is
the ratio of the correlation functions on different volumes. The lines show the behaviors of a tower
of DK states, a tower of Dsπ states, the sum of DK states and Dsπ states, and a tetraquark state
only. The points with error-bars on the plots show our real data.

For periodic boundary condition case, the tetraquark state should have the ratio 1 on all time
slices while a scattering state should have a ratio at 3.4. If there are many states in the correlation
functions, the ratios run from 1 to 3.4 while the time increases. It shows that we need a long time
extent to observe the 1/L3 behavior of scattering states. For the hybrid boundary condition case,
the conclusion is similar.

The real data, however, contains DK states, Dsπ states, other scattering states and excited
states. Therefore, the behavior is more complex and it is difficult to find a simple model to fit it.
We conclude that the time extent of our lattice is not long enough to resolve individual scattering
state. This renders useless the volume study to discern the number of particles of the state.

It is claimed in the lattice calculation [20] that tetraquark mesoniums are found on (1.8)3×3.5
fm and (2.1)3 ×4.2 fm lattices through the volume study. The time extent is about the same as that
of our lattice. In view of this study, the time extent in Ref. [20] is similarly shorter than needed
to resolve the tower the scattering states and, thus, suffers the same shortcoming as revealed in the
present study.

4. Conclusions

We have studied the scalar charmed-strange meson with chiral fermions. The correlation func-
tions with the 4-quark interpolating operator are fitted and no 4-quark state is found in our data.
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The result shows that the meson D∗
s0(2317) is not likely a 4-quark state.

The fact that D∗
s0(2317) mass is well reproduced as a cs̄ meson in the study with chiral

fermions [12], the present calculation reinforces this interpretation.
We find that the volume method is not effective in the present case due to the fact that the

scattering states spectrum are closely packed for such heavy states and one cannot separate out
individual scattering states and its volume dependence is skewed as a result.

The open-jaw diagram will be studied in the future. More information about the spectral
weights can be extracted in the study and we can thus make a more precise fitting model.

The I = 0 channel will be studied with disconnected diagrams and variational method.
With similar methods, other interesting states in the charm region can be studied, such as

X(3872), Z+(4430), etc..
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