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We report meson spectra obtained by using valence overlap fermion propagators generated on
a background of 2+1 flavor domain wall fermion gauge configurations on 163 × 32, 243 × 64
and 323× 64 lattices. We use many-to-all correlators with Z3 grid source and low eigenmode
substitution which is efficient in reducing errors for the hadron correlators. The preliminary
results on meson spectrum, a0 correlators, and charmonium hyperfine splitting for three sea quark
masses are reported here.
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1. Introduction

During the last few years RBC and UKQCD collaborations have generated a large set of con-
figurations with 2+1 flavor dynamical domain wall fermions (DWF) on several lattices with pion
mass as low as 300 MeV and volume large enough for mesons (mπL > 4) [1]. Reducing sea quark
masses to lower values requires substantial computational effort. A possible expedient approach
toward unquenched QCD simulation with chiral fermions could be to use overlap fermions as the
valence quark on those domain wall gauge configurations. In view of the fact that the overlap
fermion has additional desirable features, such as incorporation of multi-mass algorithms and pre-
cise evaluation of the matrix sign function, which one can take advantage of in order to improve
chiral symmetry as well as the quality of the numerical results.

The use of overlap valence on domain wall fermion gauge configurations is a mixed action ap-
proach which is associated with both mixed action and partially quenched disadvantages. However,
the mixed action partially quenched chiral perturbation theory (MAPQχPT) has been developed
for Ginsparg-Wilson fermion on Wilson sea [2] and staggered sea [3], and has been worked out for
many hadronic quantities to next-to-leading order (NLO), such as pseudoscalar masses and decay
constants [2, 3], isovector scalar a0 correlator [4, 5, 6], heavy-light decay constants [7], and baryon
masses [8, 6]. Using similar MAPQχPT for two different chiral fermions, it is possible to extract
reliable physical quantities such as masses and decay constants. Since both fermions used here
are chiral fermions, ∆mix, the low energy constant representing O(a2) discretization dependence,
is smaller than other mixed action formulations [10]. We shall also adopt the deflation method for
overlap formulation, as will be mentioned later, to speed up inversion. The overlap formulation
also incorporates multi-mass algorithm which enables calculation of multiple quark propagators
covering the range from very light quarks to the charm on these sets of DWF lattices. This makes it
possible to include the charm quark for calculations of charmonium and charmed-light mesons us-
ing the same fermion formulation for the charm and light quarks [9]. With this formalism, while it
is possible to get insight of light quark behaviors of many physical quantities, rich phenomenology
involving charm mesons and baryons can also be studied in the same lattice formulation.

2. Formalism : Overlap with deflation, HYP smearing, Z3 grid source and low mode
substitution

The formalism for our calculation was detailed in ref. [10]. Here we outline that briefly. It has
been shown [11] that the projection of low eigenmodes from the Dirac operator can speed up inver-
sion of fermion matrices and this procedure of deflation has been applied to both hermitian [12, 13]
and non-hermitian [14] systems as well as to hermitian system with multiple right-hand sides [15].
In addition to faster inversion one can also substitute exact low eigenmodes in the noise estimation
such as in quark loops [16] and all-to-all correlators [17, 18] to reduce errors in two and three-point
correlators of mesons.

One can get the eigenvectors of the massive overlap Dirac operator by calculating the same
for the massless Dirac operator Dov. Since D†

ov = γ5Dovγ5, and [DovD†
ov,γ5] = 0 one first uses

Arnoldi algorithm to search for eigenmodes of DovD†
ov with real eigenvalues |λi|2 which are doubly

degenerate with opposite chirality. Eigenmodes of Dov can then be obtained by diagonalizing the
two chiral modes in Dov.
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Figure 1: (left (right)) The lowest 200 (400) eigenvalues for kernel in the inner (outer) loop of the overlap
fermion for a 323×64 configuration with ml = 0.004.
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Figure 2: (left) The vector correlator for the 323×64 lattice at mπ ∼ 200 MeV for three different choices.
(right) The respective relative errors.

Smearing the gauge links suitably could deplete the density of the lowest eigenvalues in HW

and by using HYP smearing we observe that the lowest eigenvalue with HYP smearing after defla-
tion with 100 to 200 eigenmodes is about 3 times larger than those without HYP smearing. In Fig.1
we have plotted the spectra of the lowest 200 (400) eigenvalues for kernel in the inner (outer) loop
of the overlap fermion for a 323× 64 configuration with ml = 0.004. In Table 1 we sum up our
findings for speed up using HYP smearing and deflation in detail along with overhead of producing
eigenmodes.
Table 1: A comparison of speedup of inversion with HYP smearing (S) and deflation (D) of the outer loop.
The inner and outer iteration numbers are for one propagator with 12 columns of color-spin. The speedup
refers to that between the case of D+S vs the one with neither D nor S.

163×32 243×64 323×64

residual w/o D D D+S w/o D D D+S w/o D D D+S
HW eigenmodes 10−14 100 100 100 400 400 400 200 200 200
Dov eigenmodes 10−8 0 200 200 0 200 200 0 400 400
Inner iteration 10−11 340 321 108 344 341 107 309 281 101
Outer iteration 10−8 627 72 85 2931 147 184 4028 132 156
Speedup 23 51 79
Overhead 4.5 propagators 4.9 propagators 7.9 propagators

In addition to the above speed up procedure we also substitute the low-frequency part of the
noise estimated correlator with the exact one obtained from the eigenmodes, which has been shown
to reduce the variance [17, 18]. To do that we employ Z3 noise grid source with support on certain
spatial grid points in a time slice to calculate the quark propagator which amounts to a many-to-all
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Figure 3: The same as figure 2 for the nucleon correlator with mπ ∼ 300 MeV.

approach as opposed to the all-to-all approach. This reduces the noise contamination in the high
frequency part of the correlators. The details are given in ref. [10]. In Figs. 2 and 3 we have plotted
the vector (at mπ ∼ 200 MeV) and nucleon (at mπ ∼ 300 MeV) correlators with point source, Z3

grid source, and Z3 grid source with low mode substitution. On the right we also plot the relative
errors which clearly show that Z3 grid source with low mode substitution is the better option.

3. Numerical details
We have calculated overlap quark propagators with overlap valence quarks by using 2 +

1 flavor domain wall fermion gauge configurations generated by RBC and UKQCD collabora-
tions [1]. Three sets of lattices are used with the four-dimensional sizes of 163×32,243×64(a−1 =

1.73(3)GeV), and 323×64(a−1 = 2.32(3)GeV) with several sea quark masses each. The Zolotarev
rational polynomial approximation up to 14th degree is used to approximate the matrix sign func-
tion and for the window [0.031, 2.5], the approximation to the sign function is better than 3.3×
10−10 [10]. Furthermore, low-mode deflation is used for both the inner and outer inversion of the
overlap operator. Utilizing HYP smearing the largest absolute values of the overlap eigenvalues we
deflate are 0.2, 0.125, and 0.22 on 163×32,243×64, and 323×64 lattices with 100, 400, and 200
eigenvectors, respectively.

4. Results
The results reported here are for the 323×64 lattice with lattice spacing a−1 = 2.32(3) GeV.

In Fig. 4(left) we plot (mπa)2 as a function of valence quark masses ma in the range [0.0046−3.0]
and for three sea quark masses. One can observe the nearly linear behavior up to a heavy quark
mass. In Fig. 5(right) we also plot (mπa)2/ma vs ma for the same range of quark masses. One
can observe the partially quenched chiral logarithm due to the mismatch of valence and sea quark
masses. It is evident that the divergence becomes prominent with the increase of sea quark mass
when the valence quark masses are lighter than the sea. In the future we will estimate the chiral log
parameters for these sets of data.

The effect of partial quenching is more evident in the case of the scalar meson. If the valence
quark mass is lower than the sea mass then the lowest state in the scalar meson spectrum will be
the would-be ηπ state which has negative contribution to the correlator. This has been investigated
previously by various groups [21, 22, 5, 7, 6]. In Fig. 6(left) we plot scalar correlators for the sea
mass 0.004 and for several valence quark masses. It is evident that as one increases valence mass,
effect of the negative dip, which is a signature of the would-be ηπ state, reduces. In Fig. 6(right)
we plot scalar correlators for a given valence quark mass and for three sea quark masses. It is also
evident that as one decreases the sea mass the contribution to the partially quenched ghost reduces.
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Figure 4: (left) (mπ a)2 is plotted as a function of ma for the 323×64 lattice with quark masses ma = [0.0046
– 0.3]. (right) (mπ a)2/ma vs ma showing chiral logarithm for the same range of quark masses.
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Figure 5: (left) Isovector scalar meson correlators are plotted for various valence quark masses and for
ms = 0.004. (right)The same correlators at a fixed valence mass (lower than smallest ms) and for various ms.

If mvv′/mss′ is the mass of the pseudoscalar meson made up of the valence/sea quark and
antiquark and mvs is the mass of the mixed valence and sea pseudoscalar meson, then the leading
order (LO) pseudoscalar meson masses are given as

m2
vv′ = Bov(mv +mv′),

m2
vs = Bovmv +Bdw(ms +mres)+a2

∆mix,

m2
ss′ = Bdw(ms +ms′+2mres), (4.1)

where ∆mix is a low energy constant representing O(a2) discretization dependence in the LO mixed-
action chiral Lagrangian. ∆mix is also a measure of unitarity violation due to mixed action formalism
at finite lattice spacing, which should vanish at the continuum limit. One can notice that ∆mix

term enters only in mvs. We have measured ∆mix term in ref. [10] and have found that it is ∼ 7
times smaller than the case of DWF valence on staggered sea [20] and ∼ 18 times smaller than
that of overlap on Wilson sea [19]. For a 300 MeV pion on the 243× 64/323× 64 lattice with
a ∼ 0.12/0.085 fm, the shift in mass due to ∆mix is ∼ 19/10 MeV. This small shift due to ∆mix

could admit a better extrapolation with the help of MAPQχPT.
In Fig. 7 we show meson masses obtained in a large range of valence quark masses at the

lightest sea mass, msea = 0.004. On the left side, we have plotted pseudoscalar, vector, axial and
scalar masses as a function of (mπa)2. The threshold decay channels are also depicted with solid
lines to indicate two-meson energy. For the vector channel, as one can observe, our data points
are much below the threshold ππ P-wave energy indicating that ππ state lies higher than the ρ on
on this lattice for the given range of quark masses. However, the axial channel decay threshold is
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Figure 6: (left) Light quark meson masses are plotted over a range of (mπ a)2. Threshold decay channels
are also indicated by solid lines. (right) Meson masses in the charm quark mass ranges.
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Figure 7: (left) The hyperfine splitting is plotted in the charm quark mass region as a function of 1√
ma

showing its linear dependence. (right) The same as a function of (mπ a)2 along with experimental data.

overlapping our data which indicates that our data either represents the axial resonance (a1) or the
two particle state ρπ . If this is indeed the ρπ state, then this will be the first observation of this
state on the lattice. However, to conclude that one needs to show the existence of it along with
the axial vector meson, and furthermore, the required volume dependence of a two particle state.
On the right hand side we have plotted the meson masses in the charm quark mass range. In the
future, we will do chiral extrapolation with MAPQχPT and then continuum extrapolation to obtain
physical values for these meson masses.

In Fig.8 we plot the hyperfine splitting (HFS) between heavy vector and pseudoscalar meson
masses. Over the years, HFS obtained by lattice calculations are smaller than its experimental
value. It was argued that lattice spacing errors along with dynamical fermion effects and non-
inclusion of the disconnected insertion contributed to this discrepancy. The HFS is expected to scale
like ∝

1√
m to leading order in m. Based on this expectation, in Fig.8(left) we plot the HFS obtained

in the charm quark mass range for two sea quark masses. It is to be noted that the data points
are linear in this mass range and one can expect a smaller m2 dependence. We fit the HFS in this
range to the form ∆EHFS =

a√
m(1+

b
m), which includes the next term in large m expansion. The fit

value obtained are a= 0.0349(5) and b= 0.0014(2268) which shows that the 1/
√

m dependence is
pretty accurate. In Fig. 8(right) we plot the HFS as a function of m2

πa2 along with the experimental
number and one can observe that the experimental number is very close to one of our data point.
Of course one needs to do continuum and chiral extrapolation to obtain its final value. This is very
encouraging in the sense that other charm physics can also be obtained from this set of lattice.
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5. Summary and outlooks
Overlap valence on 2+ 1 flavor DWF configurations is a promising approach to do lattice

QCD simulation with light, strange, and charm quark together in the same fermion lattice formula-
tion. We have demonstrated that the eigenvalue deflation along with HYP smearing is very efficient
procedure for inversion and the the Z3 grid source with low-mode substitution can reduce error in
two-point correlator up to a factor 4. Results shown for the meson spectrum are very encouraging.
With appropriate MAPQχPT we will next do the chiral extrapolation and then continuum extrap-
olation. Furthermore, we found that the 1/

√
m behavior in the HFS extends to the charm quark

range and the result for the HFS is quite encouraging. This motivates us to study charm-light,
charm-strange and charm-charm spectrum and other related phenomenologies in the future.
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