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Preliminary results are presented for the spectrum ofDs mesons using the 2+1 flavor Clover-

Wilson configurations made available by the PACS-CS collaboration. For the heavy quark, the

Fermilab method is employed and we report on the tuning of thecharm-quark hopping parameter.

As our main focus, we present initial results for the spectrum of P-wave states, where previous
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1. Introduction

The spectrum of charmed-strange mesons contains a number ofwell established states, notably
the “S-wave” states of quantum numbersJP 0− and 1−, theDs and theD⋆

s and the “P-wave” states
with quantum numbers 0+ (D⋆

s0(2317)), 1+ (Ds1(2460) andD⋆
s1(2536)) and 2+ (D⋆

s2(2573)). In
addition there are a number of states which have been observed more recently. These are [1] the
D⋆

s1(2710) theD⋆
sJ(2860) theD⋆

sJ(3040)) and an unconfirmed state previously observed by SELEX
[2], theD⋆

sJ(2632). While theD⋆
s1(2710) is commonly believed to have quantum numbersJP = 1−,

there are several possibilities for the other states which are not ruled out by experiment. The
D⋆

sJ(2860) has natural parity and is most often identified with a 3− state, while some still argue
the possibility of a 0+ identification [3]. TheD⋆

sJ(3040) has unnatural parity and is commonly
interpreted as either a 1+ or a 2− state.

Lattice QCD (LQCD) provides the possibility to elucidate the spectrum without resorting to
model assumptions. To reach this goal, several systematic sources of uncertainty have to be con-
trolled. This has recently been achieved for the light-quark ground state meson and baryon spec-
trum ([4]). Dealing with heavy charm or bottom quarks on the lattice introduces complications of
its own, and so far a similar precision for the spectrum ofDs states has not been attained.

One common feature of calculations within various models and early LQCD calculations is
that the ground states in the 0+ and 1+ channels are often found to be quite a bit heavier than the
experimental resonances. This has sparked speculations about the nature of these states. Molecular
or tetraquark interpretations have been suggested. Another contribution to these proceedings [5]
deals with this possibility.

In the next section our calculational setup and the tuning ofthe charm quark mass are de-
scribed. Some first preliminary results from a limited number of configurations follow in section
3. As a cross check, the low-lying charmonium spectrum is also calculated. We conclude with a
short summary and outlook.

lattice size β c(l)
sw c(h)

sw κu/d κs #configs used #configs total

323
×64 1.90 1.715 1.52617 0.13700 0.13640 104 399

323
×64 1.90 1.715 1.52493 0.13727 0.13640 - 400

323
×64 1.90 1.715 1.52381 0.13754 0.13640 - 450

323
×64 1.90 1.715 1.52327 0.13754 0.13660 - 400

323
×64 1.90 1.715 1.52326 0.13770 0.13640 66 800

323
×64 1.90 1.715 1.52264 0.13781 0.13640 104 198

Table 1: Run parameters for the PACS-CS lattices [6]. Withc(h)
sw we denote the heavy quark clover term. #

configs indicates our current preliminary statistics.

2. Calculational setup

Dynamical 2+1 flavor Clover-Wilson configurations generated by the PACS-CS collaboration
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[6] are used in this work. They span sea-quark pion masses from 702 MeV down to 156 MeV with
a lattice spacing of 0.0907(13) fm, as determined in [6]. Table 1 shows the parameters for the runs.
The preliminary results presented here are based on a limited number of configurations as indicated
in the table.

2.1 Charm quark treatment

To determine the mass parameter for the heavy charm quark we use theFermilab method[7]
as employed by the Fermilab-MILC collaboration [8] for their efforts involving charm and bottom
quarks. Within this approach, the charm quark hopping parameterκc is tuned to the value where the
spin averagedkinetic mass(MDs +3MD∗

s
)/4 assumes its physical value. In this simplest formulation

the heavy quark hopping parametercE = cB = c(h)
sw is set to its tadpole improved value1

u3
0
, where the

average linku0 is determined from the plaquette. The lattice dispersion relation takes the general
form [8]

E(p) = M1+
p2

2M2
−

a3W4

6 ∑
i

p4
i −

(p2)2

8M3
4

+ . . . . (2.1)

As there are not enough points to constrain such a fit we use thefollowing simplified fit forms:

1 neglect the term with coefficientW4 and fitM1, M2 andM4.

2 fit E2(p) and neglect the(p2)2 term arising from the mismatch ofM1, M2 andM4

E2(p) ≈ M2
1 +

M1

M2
p2

−

M1a3W4

3 ∑
i

(pi)
4. (2.2)

The left-hand side of Fig. 1 shows an example fit obtained fromthe first method. The resulting
parameters are given in the caption. While the statistical errors are somewhat larger with the second
method, both methods lead to reasonable fits which are compatible within statistical errors. The
right-hand side of Fig.1 shows our final tuning results. Based on a linear interpolation, we use
κc = 0.12752 for the determination of the mass spectrum. To arrive at this value the results have
been shifted to account for the somewhat unphysical strangequark mass used in the simulation.

2.2 Simulation details & Source construction

Propagators are calculated for 8 source time slices on each (independent) gauge configuration.
The source locations are chosen randomly within the time slice. For the calculation of the strange
quark propagators the dfl_sap_gcr inverter from Lüschers DDHMC package [9, 10] is employed.
For the charm quark propagators the corresponding inverterwithout deflation is used. All error bars
shown are determined with a single-elimination jackknife procedure and are of a purely statistical
nature.

A matrix of interpolators is constructed in each channel andthe variational method [11, 12]
used to isolate the low-lying spectrum. To this end, both Jacobi-smeared [13, 14] Gaussian sources
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Figure 1: Left-hand side: Example fit forκc = 0.128 obtained from Method 1 (as described in the text).
The resulting fit parameters areM1 = 0.86334(50), M2 = 0.9337(73) andM4 = 0.863(28) leading toM2

M1
=

1.0815(86). Right-hand side: Linear interpolation to determine theκc for the spectrum calculation. Results
for both theDs 0− state and the spin averaged mass are shown. The red curve (squares) is a shift to account
for the effect of a slightly unphysical strange quark mass.

us ≡ (Su)x

S= M S0 with M =
N

∑
n=0

κnHn,

H(~n,~m) =
3

∑
j=1

(

U j (~n,0)δ
(

~n+ ĵ,~m
)

+U j
(

~n− ĵ ,0
)† δ

(

~n− ĵ,~m
)

)

,

and derivative sourcesWdi

Di(~x,~y) = Ui(~x,0)δ (~x+ î,~y)−Ui(~x− î,0)†δ (~x− î,~y) ,

Wdi = Di S

are calculated. While we use both Gaussian and derivative sources for the charm quark, only
Gaussian sources are used for the strange quark.

3. Results for Ds mesons and charmonium

In the 1+ sector interpolators corresponding to different charge conjugation in the mass de-
generate case are expected to mix. This important effect is illustrated in Fig. 2. While the single
correlators (left-hand side of the figure) are almost degenerate, one can clearly isolate two distinct
low-lying states when considering a matrix of two or more suitable interpolators (right-hand side
of the figure). A similar effect is expected in the 2− channel.

Figure 3 shows preliminary results for the ground states in the 0+ and 2+ channels. In this
figure as in all following figures mass splittings relative tothe spin-averaged pole mass are plotted.
The results highlight the need for simulations at light sea quark masses1. While our results in

1Note that the detailed behavior when approaching the chirallimit is intimately related to the scale setting on the
lattice.
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Effective masses from single correlators
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Figure 2: Left-hand side: Diagonal correlators in the 1+ channel from theκ tuning run atκc = 0.128.
The interpolators corresponding to different charge conjugation in the mass degenerate case lead to almost
identical masses. Right-hand side: Using a 2×2 matrix of correlartors two separate low-lying states can be
identified. The mixing between the two structures enhances the observed mass splitting.
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Figure 3: Chiral behavior in the 0+ and 2+ channels. For the latter the results from the T2 lattice irreducible
representation are shown. The results from the E representation are similar.

the 2+ channel show only a small deviation from the experimental value (fully consistent with
the presence of non-negligible discretization effects), the results in the 0+ channel still suggest a
ground state energy somewhat larger than the physical one. This could be attributed to volume
effects, discretization effects and/or the lack of scattering states in our basis.

To get an idea of the magnitude of discretization effects it is instructive to take a closer look
at the ground state hyperfine splitting. Figure 4 shows the results for bothDs mesons and for
charmonium. As expected [8] within the Fermilab approach the discrepancy is smaller forDs

than for charmonium, where the experimental value is underestimated by about 18 MeV. One may
expect discretization effects for the P-wave states to be ofsimilar magnitude.

While we have not accumulated enough data points for a sensible extrapolation, one can get a
first idea of the low-lying charmonium spectrum by comparingour simulation results at the lightest
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Figure 4: Hyperfine splitting forDs and charmonium compared to the physical splitting. The leading
discrepancy can be attributed to discretization errors.
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Figure 5: Overview of low-lying charmonium states. The data points are from the simulation atmπ = 156
MeV and the errors are statistical only. Where appropriate,the error of the experimental state is indicated
by the thickness of the lines.

pion mass with the experimental spectrum. Such a comparisonis shown in Fig. 5.

4. Summary and outlook

Preliminary results were presented for a simulation of the charmed-strangeDs mesons and of
the low-lying charmonium spectrum. As a tool of choice the variational method has been used.
The calculations indicate the importance of light sea quarks for some of the states. Results for the
hyperfine splitting and the low-lying charmonium spectrum show that a reasonable mass-tuning for
the charm quark has been achieved. For theDs mesons with quantum numbersJP = 1+ the im-
portance of mixing between different interpolator structures is highlighted. While almost physical
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sea-quark masses clearly improve agreement with experimental data,Ds results in the 1+ and 0+

channels, where multiparticle thresholds are close to the state of interest, still show a substantial
deviation from experiment. The role played by discretization effects, by finite volume effects and
by an incomplete variational basis (providing only poor overlap with multiparticle states) will be a
topic of future research.
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