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Flavour symmetry breaking . R. Horsley and P. E. L. Rakow

1. Introduction

The QCD interaction is flavour-blind. Neglecting electromagnetic and weataittens, the
only difference between quark flavours comes from the quark mass makiinvestigate here how
flavour-blindness constrains hadron masses after fla8bli8) is broken by the mass difference
between the strange and light quarks, to help us extrapotateffavour lattice data to the physical
point.

We have our best theoretical understanding when all 3 quark flabhawes the same masses
(because we can use the full power of flav8l(3)); nature presents us with just one instance of
the theory, withm§/nf ~ 25. We are interested in interpolating between these two cases.

We consider possible behaviours near the symmetric point, and find thatrflaindness is
particularly helpful if we approach the physical poifitf**,m§*), along a path in thenf, ) plane
starting at a point on th8U(3) flavour symmetric liner(f* = n) and holding the sum of the quark
masses; + nfj + m§ = 2nf + n constant, [[1], as sketched in F[g. 1.

Figure 1: Sketch of the path (red, solid line) in tief?, m) plane to the physical poirftr{*, m*).

2. Theory

Our strategy is to start from a point with all 3 sea quark masses equal,

mj} = g = g = g, (2.1)
and extrapolate towards the physical point, keeping the average Séapss
= 3(n{ + mg + k) (2.2)

constant. For this trajectory to reach the physical point we have to seapaint wherer§ ~ ng*.

As we approach the physical point, ta@ndd quarks become lighter, but tlsdbecomes heavier.

Pions are decreasing in mass, Kuandn increase in mass as we approach the physical point.
We introduce the notation

6nﬁzm§—m§, g=u,d,s, (2.3)
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and later use a similar notation for bare quark masses. (We will be mainly ii#élesthe 21
flavour case, withm[j = mfj = n.) With this notation, the quark mass matrix is

m 0 0
M= | 0nmg O
0 0 nt
100 100 -1 00
=m|010|+i6m—-omf|0-10|+3om| O -10]. (2.4)
001 000 0 02

The mass matrix# has a singlet part (proportional ty and an octet part, proportional 3,

Ag. In the 24- 1 casedny] = onf} and isospin is a good symmetry. We argue that the theoretically
cleanest way to approach the physical point is to keep the singlet pa# obnstant, and vary
only the non-singlet parts. One technical advantage of this strategy is #iraiplifies the quark
mass renormalisation. In the case of clover/Wilson fermions, the singlet@mdinglet parts of

the mass matrix will renormalise with different renormalisation const@hts [2]

z5 -2

NS
Zm

nﬁ = st(n‘h =+ azm) ) az = ) (25)
whereaz represents the fractional difference between the renormalisation ntgidumerically
this factor is~ O(1), and is thus non-negligible. Of course, for chiral fermiogs=0.) This gives

m = Z(1+ az)m, (2.6)

and so by keeping the singlet mass constant we avoid the need to use sverddfs. This means
that even for clover actions it does not matter whether we keep the basaamalised average
sea quark mass constant (so we shall drofF teerscript in the following considerations).

An important advantage of our strategy is that it strongly constrains thalj@snass de-
pendence of physical quantities, and so simplifies the extrapolation towedshysical point.
Consider a flavour singlet quantity (for example the scgl®r the plaquett®) at the symmetric
point (my, mp, Mp). If we make small changes in the quark masses, symmetry requires

org org org

am, = oy = Im (2.7)
If we keepmy + myq + mg constantdm; = —dm, —dmy = —2dm so
odrg drg drog
dro=dm—+dmy— +dmy— =0. 2.8
ro m’amﬁ m’amd+ ™ e (2.8)

The effect of making the strange quark heavier exactly cancels that effmaking the light quarks
lighter, so we know thaty must have be stationary at the symmetrical point. This makes extrapo-
lations towards the physical point much easier, especially since we finththedctice quadratic
terms in the quark mass expansion are very small. Any permutation of thesgaadk as an inter-
changeu < s, or a cyclic permutation — d — s — u doesn’t change the physics, it just renames
the quarks. Any quantity unchanged by all permutations will be flat at therstric point, like
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Figure 2: The behaviour of the octet and decuplet under the permuatgtioupSs. The colours denote sets
of particles which are invariant under permutations of tharf flavours.

ro. We can also construct permutation-symmetric combinations of hadrongx&inple, for the
decuplet, any permutation of the quark labels will leave Xfe (uds unchanged, so thE® is
shown by a single black point in Fif} 2. On the other hand, a permutation ésuchs d — s)
can change & (uuu) into aA~(ddd) or (if repeated) into a2~ (ss9, so these three particles
form a set of baryons which is closed under quark permutations, arallagiven the same colour
(red) in Fig.[R. Finally the 6 baryons consisting of two quarks of one flgvand one quark of a
different flavour, form an invariant set, shown in blue in F[]g. 2. If wensthe masses in any of
these sets, we get a flavour-symmetric quantity, which will obey the samenargwe gave in
eq. (2.8) for the quark mass (in)dependence of the sgaM/e therefore expect that thé* mass
must be flat at the symmetric point, and furthermore that the combinatdgs + Ma- + Mg)
and (Ma+ + Mpo + Mz« + Ms— + M=.0 + M=) will also be flat. Technically these symmetrical
combinations are in thé; singlet representation of the permutation groG. We list some of
these invariant mass combinations in Tdle 1. We can use the singlet comtsrfediorthis table

Decuplet 2Ma + Mg red
baryons 2(Mp+Ms: +M=+) | blue
M- black
Octet 2(MN+Ms+Mz) | blue
baryons Ms + Mp black
Pseudoscalar ~ 4MZ2 +2M32 blue
mesons M2+ M2, black
Vector 4M- + 2M, blue
mesons 2Mp + Mg, black

Table 1. Permutation invariant mass combinations, seeE:igngS a fictitiousss particle; ng a pure octet
meson. The colours in the third column correspond to [fig. 2.

to locate the starting point of our path to physics by fixing a dimensionless tatioas

2
;;’\2: = physical value (2.9)

15; has the same symmetry group as that of an equilateral trig@gleThis group has 3 irreducible representations,
[E], two different singletsA; andA; and a doubleE, with elementE™, E™.
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whereX2 = 1(2MZ +M2) andXy = (Mn + Mz + Mz). The permutation groufs yields a lot of
useful relationships, but cannot capture the entire structure. For@eathere is no way to make
a connection between tie  (uuu) and theA™ (uud) by permuting quarks. To go further, we need
to classify physical quantities bgU(3) and the permutation grou; (which is a subgroup of
SU(3)).

Let us first consider linear terms #my. These are given in TabJ¢ 2. Since we are keeping

| Polynomial | | s | suE |
| 1 FEE |
(M—my) A |1
omg v | ET 8
(dmy — omy) v | ET 8
(M—mg)? A |1
(M—mp)dms E* 8
(M—mo)(dmy, — omy) E- 8
Sm+omi+om | v | A |1 27
36me — (dmy—omg)? | v | EF 8 27
omg(dmy — dmy) v | ET 8 27

Table 2: All the quark-mass polynomials up fo(mé), classified by symmetry properties. A tickY marks
the polynomials relevant on a constamsurface. These polynomials are plotted in Iﬂg. 4,

m constant, we are only changing the octet part of the mass matrix irf epy. (Brrefore, to
first order in the mass change, only octet quantities can be effeé8té@) singlets have no linear
dependence on the quark mass, as we have already seen by the symgquetrgra eq.[(2]8), but
we now see that all quantities BUU(3) multiplets higher than the octet cannot have linear terms.
This provides a constraint on the hadron masses within a multiplet and leads @GethMann
Okubo mass relation§][4].

In the 2+ 1 limit the decuplet baryons have 4 different masses (folthe", =*, andQ), but
there is only one slope parameter in the linear mass formula. Similarly, for thebacy®ns there
are 4 distinct masse@\, A\, 2, =), but only 2 slopes; and for octet mesons, one slope parameter for
three mesons{ K, n). Mesons have fewer slope parameters than baryons becausesthous
due to charge conjugation. In the meson octetihendK must have the same mass, but there is
no reason why th&l and=, (which occupy the corresponding places in the baryon octet), should
have equal masses once flav&uk(3) is broken.

When we proceed to quadratic polynomials we can construct polynomiald viraicsform
like mixtures of the 1, 8 and 27 multiplets 88J(3), Table[2. This covers all the structures that can
arise in the octet mass matrix, but the decuplet mass matrix can include terms vagimrinetries
10, 10, and 64, which first occur when we look at cubic polynomials in the quarlseaa§'abl{|3.
The allowed quark mass region on time= const. surface is an equilateral triangle, as shown in
Fig. 3. Plotting the polynomials of Tabl¢s [2, 3 then gives the figures in[Fighérevthe colour
coding indicates whether the polynomial is positive (red) or negative Xblue
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| Polynomial IEY SU(3)
(m— rTb)S Ar |1
(M—m)?dm E*+ 8
(M—mg)?(3m, — dy) E- 8
(M— o) (M + 6 + 6nE) A |l 27
(M—mg) [33ME — (M, — Smy)?] Et+ 8 27
(M — M) dms(Smy — Smy) E” 8 27
omuomydms vV | A |1 27 64
Sms(SmME + Smj + Se) v | E* 8 27 64
(dmy — 8mg) (6NME + dm3 + dmg) v | E” 8 27 64
(dms—dmy) (8ms — dmy) (dmy — ) | v | Ao 10 10 64

Table 3: The cubic quark-mass polynomials, classified by symmetopgnties. A tick () marks the
polynomials relevant on a constantsurface. These polynomials are plotted in f]g. 4.

om,,

7

my=0

Figure 3: The allowed quark mass region on tife= const. surface is an equilateral triangle. The black
point at the center is the symmetric point, the red star isptiyesical point. 2+ 1 simulations lie on the
vertical symmetry axis. The physical point is slightly dfet2+ 1 axis becausey > my.

We can see how well this works in practice by looking at the physical ma$tbe decuplet
baryons,

AMp + 3Ms+ + 2M=- + Mg = 13.821 GeV singlet 0 (5m)°
—2Mp +Mz:+Mg = 0.742 GeV octet O (dm)?t
AMp — 5Ms: — 2M=. +3Mq = —0.044 GeV 27plet O (dm)?

—Ma + 3Msz+ — 3M=- + Mg = —0.006 GeV 64plet O (dm)3 (2.10)

When we form combinations with particul&J(3) symmetries we see a strong hierarchy, which
suggests a short Taylor series may work well all the way from symmetry froimg, np) to the
physical point. This gives the constrained fit formulae

M2 = M3+ 2adm + (Bo + 2B1) dn¢

Mg = M§— adm -+ (Bo+ 51+ 9B2) oy
MZ, = Mg —4adm + (Bo+8B1)ony, (2.11)
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Figure 4: Contour plots of the polynomials relevant for the constafiaylor expansion, see Tablﬁs[lz, 3.A
red(dish) colour denotes a positive number while a blug(stour indicates a negative numbernif = my
(the 2+ 1 case), only the polynomials in te andE™ columns contribute.

My = Mo+ 2adm + (Bo+2B1)dn¥
Mk: = Mo — adm + (Bo+ 51+ 9B2) o
Mg = Mo —4adm + (Bo+8B1)dn?, (2.12)

My = Mo+ 3A13m + (Bo+ 3By)dnm?

Ma = Mg+ 3A20m + (Bo+ 6B1 — 3B, + 9B,) ony

Ms = Mo — 3A8m + (B + 6By + 3B 4 9B3) Ny

Mz = Mo — 3(A1 — A2)3m + (Bo + 9B; — 3B, + 9B3)on¥, (2.13)

Ma = Mo+ 3Adm + (Bo+ 3B1)dn¥

Ms: = Mo+ 0+ (Bo+ 6By + 9B2) dn?

M= = Mg — 3Adm + (Bg+ 9B; + 9B,)3nm?

Mg = Mo—6A3M + (B + 12B1)dny. (2.14)

While the linear terms are highly constrained, the quadratic terms much lesdesedianly for the
baryon octet is there any constr&intNote also that for the pseudoscalar ochét, is a fictitious
S particle (due to non-perfect-n’ mixing), while for the vector octet due to near perfect mixing

2The coefficients of the$rnr1,2 term appear complicated; indeed there seem to be too many for the nodEtn
eq ). However although not discussed hereHe3) flavour symmetry breaking expansion can be extended to
different valence quarks than sea quarks or ‘partially quenchinghit case then, ms sea quarks remain constrained
by m = const., but the valence quarks denotedpy s are unconstrained. Withpg = pg —m, the nucleon octet,
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between thep andw the My, is (almost) a perfeds state, so thal, ~ M,. However even these
fictitious particles still contain useful information, due to the constrained fit.

As egs. [2.71)[(2.14) have been derived using only group theoreticreents, then they will
be valid for results derived on any lattice volume (though the coefficieptstarfunctions of the
volume).

What is the effect of higher order terms on our path in timg,m ) plane? While at lowest
order it did not matter whether we kept the quark mass constant or a panésle now it does.
Practically it is easiest to keep the (bare) quark mass fixed. Thus linemstantXs are curved
though they do still have to have the slope-e2 at the point where they cross tB&J(3) flavour
symmetric line. Now we have to specify more closely what we mean when weZagg- m?,
constant, as different scale choices give slightly different pathseasted in Fig[]5. Note that the

(m;/,m,)

s m =const”’

Figure5: Sketch of some possible paths (red lines) in(tie ms) plane to the physical poirftr{®*, m&*).

physical domaim, m§ > 0 translates to

laz Zaz
> 372 m, > 3% m, 2.15
m= (1+%0’2)ms = (1+%O’Z)m (219
leading to non-orthogonal axes and possibly negative bare quark (Téese features disappear
for chiral fermions wherrz = 0.) If we make different choices of the quantity we keep constant at
the experimentally measured physical value, for example

Xp Xz Xz Xq

v?2 ' v2 V2 V2 (216)
XG X2 Xzl X?

eq. [2.1B) becomes

Mn = Mo+ 3A184; + Bodn¥ + 381 5P
Ma = Mo+ Aq (281 + Spis) — Ap(Sps — Sy ) + BodE + By (28 u? + SuZ) — Bp(3u2 — S1?) + Ba(SHs — O )?
Ms = Mo-+A1(251 + Siis) + Ao(Sis — Siy) + BodNY + By (284 + Sd) + Ba(Sé — Suf) + Ba(Sps — Sy )

Mz = Mo+Aq(281 + Spts) — Az (Spis — S14)) + BoSM + By (8P + 28 u2) — Bo(SE — Sf) +Ba(Sps — ).

Whenpu — m (i.e. return to the ‘unitary line’) then these results collapse to the previesidts of eq.3). Similar
results hold for eq3112) a@.m). We can also shawveththis trajectory the errors of the partially quenched
approximation are much smaller than on other trajectories.
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where in addition to the previously defined singlet quantities we also nowm%l(ZMmL Ma),
Xo = 3(2Mk- +Mp), X =1yt we get slightly different trajectories. The different trajectories begin
at slightly different points along the flavo®U(3) symmetric line. Initially they are all parallel
with slope—2, but away from the symmetry line they can curve, and will all meet at theigdly
point. (Numerically we shall later see that this seems to be a small effect.)

Finally we mention the connection of this methodxBT. For example for the pseudoscalar
octet, using the results if][5] and assuming their validity up to the point on theuflaymmetric
line, we find

- 16x X X

M2 =% |1-—2(3Lg4+Ls—6Lg—2Lg)+—2—In2

0 X! fg( 4 bs ke 8)+24712fg N2

16x X X

a = 1- =2 (3L4+2Ls—6Lg—4Lg)+ —2 - In2

Qo[ fg( 4+2Ls—6Lg 8)+87_[2f§ A2
e
Po = 62 {2

1 X
3 0 2(Le — 2 a
! f2 [ (Ls °) 24n2< /\)2(>

16(Ls — 2Lg) — — <3+ 2In X)

(2.17)

)

2472 N2

with Qo = B§Z{y, X = 2Qo(1+ a)m, where thd_s are appropriate Low Energy Constants or LECs.
For clover fermions, as mentioned before we have to respect the fasinigéet and non-singlet
guark masses renormalise differently which leads to a nonagro

We first note that when expanding tlixePT about a point on th8U(3) flavour symmetry
line gives to leading order only one parametar HThis means, in particular, that flavour singlet
combinations vanish to leading order, as discussed previously.) Secahillywe fit toa andfp,
B1 andf, it will be difficult to determine the individual LECs. The best we can plipaope for
are these combinations.

3. ThelLattice

We use a clover action for21 flavours with a single iterated mild stout smearing as described
in [B]. Also given in this reference is a non-perturbative determinatidh@fmprovement coeffi-
cient for the clover term, using the Schrédinger Functional method. Allgkelts given here will
be atB = 5.50, cgyy = 2.65. HMC and RHMC were used for the 2, 1 fermion flavours respectively
[[1, to generate the gauge configurations. The (bare) quark massésfmed as

1/1 1
amy = < - > , (3.1)
2\ Kq Ksymc
where vanishing of the quark mass along 8t#(3) flavour symmetric line determinegymc. We
then keepm = const.= my which gives

Ke= 5. (3.2)
O T K
sym
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So once we decide ok this then determiness. A series of runs along th8U(3) flavour line
determines the initial point on this Iin«é%by looking whenX;;/Xs, S= N, A, p are equal to their
physical values, see egb. (2.9), (2.16). This would also inalutiee have previously determined
the physical value ofy.

In Fig. B we plotX2/X3 for various Xs (with S= N, A, p, r). Also shown are constant

0.30 — T
r | |
| | eS=N
L g____ ® I Q s=A
R S e R
025 - | ‘ 4 e
r I I
777?“67 7777777777777777 o 777@347774@777% 77777 -
P~~~ #- - %% - |
L 1 |
0.20 + | | 4
N I ?K :
S | |
S0 |
0.15 + | . | 4
i:::C:::::?:::::::::@::,m,,,ﬂ,,,é ,,,,, o ]
* ‘ ]
I I
r | |
0.10 - } | 4
| |
l l
0‘05 L \: L L L L L L L L L :
0.00 0.25 0.50 0.75 1.00 1.25
M,7IX,}

Figure 6: X2/X2 versusM2/X2 for S= N, A, p, 1 for k(= 0.12090. The dashed vertical line represents
the physical value, while the dotted line gives t86(3) flavour symmetric point. Filled points are on
328 x 64 lattices while open points are on®2448 sized lattice. Dashed horizontal lines represent conhsta
fits to either the 32x 64 or 24 x 48 results. The physical values are denoted by stars.rditre small
star is the value obtained using= 0.5fm while the large star useg = 0.467fm (determined fon; = 2
degenerate fIavourE [8]).

fits to the two volumes — Z4x 48 and 32 x 64. (The runs on 24x 48 lattices haveD(2000
trajectories, while the runs on 32 64 lattices haved(1500) trajectories.) As mentioned before
we first simulate at various quark masses onSh3) flavour symmetric line (i.em?/X2 = 1 in
Fig.[8 WhereKs(%: 0.12090) to determinafs(gzn Note that simulations with a ‘light’ strange quark
mass and heavy ‘light’ quark mass are possible — here the right most poittis(inverted strange
world we would expecp — Z or A decays.) It is apparent that while some scales fluctuate others
(in particularS= N andr) are very smooth. We take this as a sign that singlet quantities are very flat
and the fluctuations are due to low statistics. Assuming that all ratios are oiitsta higher order
effects are small, see ed. (3.16)) we would expect all the ratios to gmvertheir experimental
values. This is complicated because there are small finite size effectatdtegecan again best be
seen in the&s= N andr data). To investigate possible effects we are generating results on ty varie
of lattices, but for the present for the ratios we simply take the largest volwaitable. In Fig[]7

we plotaXs/Xs, S= N, A, p, r, mfor the largest volume fitted results from F@. 6 (together with
smaller data sets fofs(%: 0.12080,K3(82n: 0.12092, the latter data set is presently only partially
generated). This ratio gives estimates for the lattice spacfogthe various scales. There appears

10
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Figure 7: aXs/Xs against JlKéS?nfor S=N,A p,r, rransz()%: 0.12080, 012090, 012092. The vertical
dashed line is atéS?n: 0.12095.

to be convergence to a common scaleaef 0.078fm. To investigate this point further we are
performing additional runs a;ts(%: 0.12092 and (1.2095.

4. Spectrum results

We now consider the mass spectrum. First we check whether there is @ bieoarchy due
to the SU(3) flavour symmetry as found in ed. (2110). In Ff§. 8 we plé, + 3ms- + 2M=- +
MQ)/XA, (—ZMA + Mz + MQ)/XA, (4MA — BMs+ — 2M=- + MQ)/XA and(—MA + 3Mys+ — 3M=- +
Mq)/Xa againstM2/X2. Also shown are the experimental values. There is reasonable agteemen
with these numbers. (Sefd [9] for a similar investigation of octet baryonss)also seen that as
expected whilg§ —2Ma + M=- + Mgq)/Xa has a linear gradient in the pion mass, in the other fits
any gradient is negligible. To check for possible finite size effects weptta run at the same
(ki,Ks) but using 24 x 48 lattice rather than 32« 64. There is little difference and so it appears
that considering ratios of quantities within the same multiplet leads to (effectareellation of
finite size effects.

In Fig.[® we plot the nucleon octy, /X (for No = N, A, Z, =) againstM2/X2 for Ksym=
0.12090. A typical ‘fan’ structure is seen with results radiating from the compumint on the
symmetric line. Again, finite volume effects tend to cancel in the ratio (normalisiitly thve
singlet quantity from the same octet) and so both volumes have been useditnTthe combined
fit uses eqs[(2.13)[ (2]11) with the bare quark mass being an ‘interma@hyeter. Note that one
point has a light strange quark and a heavy ‘light’ quark. Similarly in Hi@sadd[IJL we plot
the corresponding nucleon decugiét, /Xa and vector octe,, /X, againstM2/X2 respectively.

11
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Figure 8: (4Mp + 3Mss + 2Mz=+ + Mq)/Xa, (—2Mp + M=+ +

Mq)/Xa, (4Mp — BMs+ — 2M=+ + Mq ) /Xa

and (—My + 3Ms: — 3Mz- +Mq)/Xa (filled circles) againsM2/X2 together with a fit of constant, linear
quadratic and cubic term idbm respectively. Extrapolated values are shown as opaguesitexperimental
values are denoted by stars. The opaque triangle is a rue aaithek|, Ks), but on a 24 x 48 lattice rather

than a 33 x 64 lattice.
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Although we have included quadratic terms in the fit, there is really very littleature in the
results. We find good agreement with the experimental results.

5. Conclusions

We have outlined a programme to systematically approach the physical patirigstaom
a point on theSU(3) flavour symmetric line. Exploratory results for the hadron mass spectrum
show that constrained linear extrapolations give accurate results fondke spectrum. We are
also applying this method to the computation of matrix elements, some initial resultvemndrg

(9, [13].
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