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QCD lattice simulations with 2+1 flavours typically start atrather large up-down and strange

quark masses and extrapolate first the strange quark mass to its physical value and then the up-

down quark mass. An alternative method of tuning the quark masses is discussed here in which

the singlet quark mass is kept fixed, which ensures that the kaon always has mass less than the

physical kaon mass. Using group theory the possible quark mass polynomials for a Taylor ex-

pansion about the flavour symmetric line are found, which enables highly constrained fits to be

used in the extrapolation of hadrons to the physical pion mass. Numerical results confirm the

usefulness of this expansion and an extrapolation to the physical pion mass gives hadron mass

values to within a few percent of their experimental values.
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Flavour symmetry breaking. . . R. Horsley and P. E. L. Rakow

1. Introduction

The QCD interaction is flavour-blind. Neglecting electromagnetic and weak interactions, the
only difference between quark flavours comes from the quark mass matrix. We investigate here how
flavour-blindness constrains hadron masses after flavourSU(3) is broken by the mass difference
between the strange and light quarks, to help us extrapolate 2+1 flavour lattice data to the physical
point.

We have our best theoretical understanding when all 3 quark flavourshave the same masses
(because we can use the full power of flavourSU(3)); nature presents us with just one instance of
the theory, withmR

s/mR
l ≈ 25. We are interested in interpolating between these two cases.

We consider possible behaviours near the symmetric point, and find that flavour blindness is
particularly helpful if we approach the physical point,(mR∗

l ,mR∗
s ), along a path in the(mR

l ,m
R
s) plane

starting at a point on theSU(3) flavour symmetric line (mR
l = mR

s) and holding the sum of the quark
massesmR

u+mR
d +mR

s ≡ 2mR
l +mR

s constant, [1], as sketched in Fig. 1.

0
ml

R

0

m
sR

(ml

R(0)
,ms

R(0)
)

(ml

R*
,ms

R*
)

ms

R
=ml

R

m
−−R

=const

Figure 1: Sketch of the path (red, solid line) in the(mR
l ,m

R
s) plane to the physical point(mR∗

l ,mR∗
s ).

2. Theory

Our strategy is to start from a point with all 3 sea quark masses equal,

mR
u = mR

d = mR
s ≡ mR

0 , (2.1)

and extrapolate towards the physical point, keeping the average sea quark mass

mR
≡ 1

3(m
R
u+mR

d +mR
s) (2.2)

constant. For this trajectory to reach the physical point we have to start ata point wheremR
0 ≈

1
3mR∗

s .
As we approach the physical point, theu andd quarks become lighter, but thes becomes heavier.
Pions are decreasing in mass, butK andη increase in mass as we approach the physical point.

We introduce the notation

δmR
q ≡ mR

q−mR
0 , q= u,d,s, (2.3)
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Flavour symmetry breaking. . . R. Horsley and P. E. L. Rakow

and later use a similar notation for bare quark masses. (We will be mainly interested in the 2+1
flavour case, withmR

u = mR
d ≡ mR

l .) With this notation, the quark mass matrix is

M =







mR
u 0 0

0 mR
d 0

0 0 mR
s







= mR







1 0 0
0 1 0
0 0 1






+ 1

2(δmR
u−δmR

d)







1 0 0
0 −1 0
0 0 0






+ 1

2δmR
s







−1 0 0
0 −1 0
0 0 2






. (2.4)

The mass matrixM has a singlet part (proportional toI ) and an octet part, proportional toλ3,
λ8. In the 2+1 caseδmR

u = δmR
d and isospin is a good symmetry. We argue that the theoretically

cleanest way to approach the physical point is to keep the singlet part ofM constant, and vary
only the non-singlet parts. One technical advantage of this strategy is thatit simplifies the quark
mass renormalisation. In the case of clover/Wilson fermions, the singlet and non-singlet parts of
the mass matrix will renormalise with different renormalisation constants [2]

mR
q = ZNS

m (mq+αZm) , αZ =
ZS

m−ZNS
m

ZNS
m

, (2.5)

whereαZ represents the fractional difference between the renormalisation constants. (Numerically
this factor is∼ O(1), and is thus non-negligible. Of course, for chiral fermionsαZ = 0.) This gives

mR = ZNS
m(1+αZ)m, (2.6)

and so by keeping the singlet mass constant we avoid the need to use two differentZs. This means
that even for clover actions it does not matter whether we keep the bare orrenormalised average
sea quark mass constant (so we shall drop theR superscript in the following considerations).

An important advantage of our strategy is that it strongly constrains the possible mass de-
pendence of physical quantities, and so simplifies the extrapolation towardsthe physical point.
Consider a flavour singlet quantity (for example the scaler0, or the plaquetteP) at the symmetric
point (m0,m0,m0). If we make small changes in the quark masses, symmetry requires

∂ r0

∂mu
=

∂ r0

∂md
=

∂ r0

∂ms
. (2.7)

If we keepmu+md +ms constant,dms =−dmu−dmd =−2dml so

dr0 = dmu
∂ r0

∂mu
+dmd

∂ r0

∂md
+dms

∂ r0

∂ms
= 0. (2.8)

The effect of making the strange quark heavier exactly cancels the effect of making the light quarks
lighter, so we know thatr0 must have be stationary at the symmetrical point. This makes extrapo-
lations towards the physical point much easier, especially since we find thatin practice quadratic
terms in the quark mass expansion are very small. Any permutation of the quarks, such as an inter-
changeu↔ s, or a cyclic permutationu→ d → s→ u doesn’t change the physics, it just renames
the quarks. Any quantity unchanged by all permutations will be flat at the symmetric point, like
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Flavour symmetry breaking. . . R. Horsley and P. E. L. Rakow

Figure 2: The behaviour of the octet and decuplet under the permutation groupS3. The colours denote sets
of particles which are invariant under permutations of the quark flavours.

r0. We can also construct permutation-symmetric combinations of hadrons. Forexample, for the
decuplet, any permutation of the quark labels will leave theΣ0∗, (uds) unchanged, so theΣ0∗ is
shown by a single black point in Fig. 2. On the other hand, a permutation (suchasu → d → s)
can change a∆++(uuu) into a ∆−(ddd) or (if repeated) into anΩ−(sss), so these three particles
form a set of baryons which is closed under quark permutations, and are all given the same colour
(red) in Fig. 2. Finally the 6 baryons consisting of two quarks of one flavour, and one quark of a
different flavour, form an invariant set, shown in blue in Fig. 2. If we sum the masses in any of
these sets, we get a flavour-symmetric quantity, which will obey the same argument we gave in
eq. (2.8) for the quark mass (in)dependence of the scaler0. We therefore expect that theΣ0∗ mass
must be flat at the symmetric point, and furthermore that the combinations(M∆++ +M∆− +MΩ)

and(M∆+ +M∆0 +MΣ∗+ +MΣ∗− +MΞ∗0 +MΞ∗−) will also be flat. Technically these symmetrical
combinations are in theA1 singlet representation of the permutation group1 S3. We list some of
these invariant mass combinations in Table 1. We can use the singlet combinations from this table

Decuplet 2M∆ +MΩ red
baryons 2(M∆ +MΣ∗ +MΞ∗) blue

MΣ∗ black

Octet 2(MN +MΣ +MΞ) blue
baryons MΣ +MΛ black

Pseudoscalar 4M2
K +2M2

π blue
mesons M2

π +M2
η8

black

Vector 4MK∗ +2Mρ blue
mesons 2Mρ +Mφs black

Table 1: Permutation invariant mass combinations, see Fig. 2.φs is a fictitiousss particle;η8 a pure octet
meson. The colours in the third column correspond to Fig. 2.

to locate the starting point of our path to physics by fixing a dimensionless ratio such as

X2
π

X2
N

= physical value, (2.9)

1S3 has the same symmetry group as that of an equilateral triangle,C3v. This group has 3 irreducible representations,
[3], two different singlets,A1 andA2 and a doubletE, with elementsE+, E−.
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Flavour symmetry breaking. . . R. Horsley and P. E. L. Rakow

whereX2
π = 1

3(2M2
K +M2

π) andXN = 1
3(MN +MΣ +MΞ). The permutation groupS3 yields a lot of

useful relationships, but cannot capture the entire structure. For example, there is no way to make
a connection between the∆++(uuu) and the∆+(uud) by permuting quarks. To go further, we need
to classify physical quantities bySU(3) and the permutation groupS3 (which is a subgroup of
SU(3)).

Let us first consider linear terms inδmq. These are given in Table 2. Since we are keeping

Polynomial S3 SU(3)

1 X A1 1

(m−m0) A1 1

δms X E+ 8
(δmu−δmd) X E− 8

(m−m0)
2 A1 1

(m−m0)δms E+ 8
(m−m0)(δmu−δmd) E− 8

δm2
u+δm2

d +δm2
s X A1 1 27

3δm2
s − (δmu−δmd)

2
X E+ 8 27

δms(δmd −δmu) X E− 8 27

Table 2: All the quark-mass polynomials up toO(m2
q), classified by symmetry properties. A tick (X) marks

the polynomials relevant on a constantm surface. These polynomials are plotted in Fig. 4.

m constant, we are only changing the octet part of the mass matrix in eq. (2.4).Therefore, to
first order in the mass change, only octet quantities can be effected.SU(3) singlets have no linear
dependence on the quark mass, as we have already seen by the symmetry argument eq. (2.8), but
we now see that all quantities inSU(3) multiplets higher than the octet cannot have linear terms.
This provides a constraint on the hadron masses within a multiplet and leads to the Gell-Mann
Okubo mass relations [4].

In the 2+1 limit the decuplet baryons have 4 different masses (for the∆, Σ∗, Ξ∗, andΩ), but
there is only one slope parameter in the linear mass formula. Similarly, for the octet baryons there
are 4 distinct masses,(N,Λ,Σ,Ξ), but only 2 slopes; and for octet mesons, one slope parameter for
three mesons, (π,K,η). Mesons have fewer slope parameters than baryons because of constraints
due to charge conjugation. In the meson octet theK andK must have the same mass, but there is
no reason why theN andΞ, (which occupy the corresponding places in the baryon octet), should
have equal masses once flavourSU(3) is broken.

When we proceed to quadratic polynomials we can construct polynomials which transform
like mixtures of the 1, 8 and 27 multiplets ofSU(3), Table 2. This covers all the structures that can
arise in the octet mass matrix, but the decuplet mass matrix can include terms with thesymmetries
10,10, and 64, which first occur when we look at cubic polynomials in the quark masses, Table 3.
The allowed quark mass region on them= const. surface is an equilateral triangle, as shown in
Fig. 3. Plotting the polynomials of Tables 2, 3 then gives the figures in Fig. 4, where the colour
coding indicates whether the polynomial is positive (red) or negative (blue).
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Polynomial S3 SU(3)

(m−m0)
3 A1 1

(m−m0)
2δms E+ 8

(m−m0)
2(δmu−δmd) E− 8

(m−m0)(δm2
u+δm2

d +δm2
s) A1 1 27

(m−m0)
[

3δm2
s − (δmu−δmd)

2
]

E+ 8 27
(m−m0)δms(δmd −δmu) E− 8 27

δmuδmdδms X A1 1 27 64
δms(δm2

u+δm2
d +δm2

s) X E+ 8 27 64
(δmu−δmd)(δm2

u+δm2
d +δm2

s) X E− 8 27 64
(δms−δmu)(δms−δmd)(δmu−δmd) X A2 10 10 64

Table 3: The cubic quark-mass polynomials, classified by symmetry properties. A tick (X) marks the
polynomials relevant on a constantm surface. These polynomials are plotted in Fig. 4.

Figure 3: The allowed quark mass region on them= const. surface is an equilateral triangle. The black
point at the center is the symmetric point, the red star is thephysical point. 2+ 1 simulations lie on the
vertical symmetry axis. The physical point is slightly off the 2+1 axis becausemd > mu.

We can see how well this works in practice by looking at the physical massesof the decuplet
baryons,

4M∆ +3MΣ∗ +2MΞ∗ +MΩ = 13.821 GeV singlet ∝ (δml )
0

−2M∆ +MΞ∗ +MΩ = 0.742 GeV octet ∝ (δml )
1

4M∆ −5MΣ∗ −2MΞ∗ +3MΩ = −0.044 GeV 27plet ∝ (δml )
2

−M∆ +3MΣ∗ −3MΞ∗ +MΩ = −0.006 GeV 64plet ∝ (δml )
3 (2.10)

When we form combinations with particularSU(3) symmetries we see a strong hierarchy, which
suggests a short Taylor series may work well all the way from symmetry point (m0,m0,m0) to the
physical point. This gives the constrained fit formulae

M2
π = M2

0 +2αδml +(β0+2β1)δm2
l

M2
K = M2

0 −αδml +(β0+5β1+9β2)δm2
l

M2
ηs

= M2
0 −4αδml +(β0+8β1)δm2

l , (2.11)
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Figure 4: Contour plots of the polynomials relevant for the constantmTaylor expansion, see Tables 2, 3. A
red(dish) colour denotes a positive number while a blue(ish) colour indicates a negative number. Ifmu = md

(the 2+1 case), only the polynomials in theA1 andE+ columns contribute.

Mρ = M0+2αδml +(β0+2β1)δm2
l

MK∗ = M0−αδml +(β0+5β1+9β2)δm2
l

Mφs = M0−4αδml +(β0+8β1)δm2
l , (2.12)

MN = M0+3A1δml +(B0+3B1)δm2
l

MΛ = M0+3A2δml +(B0+6B1−3B2+9B4)δm2
l

MΣ = M0−3A2δml +(B0+6B1+3B2+9B3)δm2
l

MΞ = M0−3(A1−A2)δml +(B0+9B1−3B2+9B3)δm2
l , (2.13)

M∆ = M0+3Aδml +(B0+3B1)δm2
l

MΣ∗ = M0+0+(B0+6B1+9B2)δm2
l

MΞ∗ = M0−3Aδml +(B0+9B1+9B2)δm2
l

MΩ = M0−6Aδml +(B0+12B1)δm2
l . (2.14)

While the linear terms are highly constrained, the quadratic terms much less so; indeed only for the
baryon octet is there any constraint2 . Note also that for the pseudoscalar octet,Mηs is a fictitious
ss particle (due to non-perfectη-η ′ mixing), while for the vector octet due to near perfect mixing

2The coefficients of theδm2
l term appear complicated; indeed there seem to be too many for the nucleonoctet,

eq (2.13). However although not discussed here theSU(3) flavour symmetry breaking expansion can be extended to
different valence quarks than sea quarks or ‘partially quenching’. In this case theml , ms sea quarks remain constrained
by m= const., but the valence quarks denoted byµl , µs are unconstrained. Withδ µq = µq −m, the nucleon octet,

7
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between theφ andω theMφ is (almost) a perfectss state, so thatMφs ≈ Mφ . However even these
fictitious particles still contain useful information, due to the constrained fit.

As eqs. (2.11)-(2.14) have been derived using only group theoretic arguments, then they will
be valid for results derived on any lattice volume (though the coefficients are still functions of the
volume).

What is the effect of higher order terms on our path in the(ms,ml ) plane? While at lowest
order it did not matter whether we kept the quark mass constant or a particlemass now it does.
Practically it is easiest to keep the (bare) quark mass fixed. Thus lines of constantXS are curved
though they do still have to have the slope of−2 at the point where they cross theSU(3) flavour
symmetric line. Now we have to specify more closely what we mean when we keep2m2

K +m2
π

constant, as different scale choices give slightly different paths as sketched in Fig. 5. Note that the

(ml

*
,ms

*
) ms=ml

m
−−

=const

ml

ms

Figure 5: Sketch of some possible paths (red lines) in the(ml ,ms) plane to the physical point(mR∗
l ,mR∗

s ).

physical domainmR
l ,m

R
s ≥ 0 translates to

ml ≥−

1
3αZ

(1+ 2
3αZ)

ms, ms ≥ −

2
3αZ

(1+ 1
3αZ)

ml , (2.15)

leading to non-orthogonal axes and possibly negative bare quark mass. (These features disappear
for chiral fermions whenαZ = 0.) If we make different choices of the quantity we keep constant at
the experimentally measured physical value, for example

X2
π

X2
N

,
X2

π
X2

∆
,

X2
π

X2
ρ
,

X2
π

X2
r
, (2.16)

eq. (2.13) becomes

MN = M0+3A1δ µl +B0δm2
l +3B1δ µ2

l

MΛ = M0+A1(2δ µl +δ µs)−A2(δ µs−δ µl )+B0δm2
l +B1(2δ µ2

l +δ µ2
s )−B2(δ µ2

s −δ µ2
l )+B4(δ µs−δ µl )

2

MΣ = M0+A1(2δ µl +δ µs)+A2(δ µs−δ µl )+B0δm2
l +B1(2δ µ2

l +δ µ2
s )+B2(δ µ2

s −δ µ2
l )+B3(δ µs−δ µl )

2

MΞ = M0+A1(2δ µl +δ µs)−A2(δ µs−δ µl )+B0δm2
l +B1(δ µ2

l +2δ µ2
s )−B2(δ µ2

s −δ µ2
l )+B3(δ µs−δ µl )

2 .

Whenµ → m (i.e. return to the ‘unitary line’) then these results collapse to the previous results of eq. (2.13). Similar
results hold for eqs. (2.11), (2.12) and (2.14). We can also show that on this trajectory the errors of the partially quenched
approximation are much smaller than on other trajectories.

8
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where in addition to the previously defined singlet quantities we also now haveX∆ = 1
3(2M∆+MΩ),

Xρ = 1
3(2MK∗ +Mρ), Xr = r−1

0 we get slightly different trajectories. The different trajectories begin
at slightly different points along the flavourSU(3) symmetric line. Initially they are all parallel
with slope−2, but away from the symmetry line they can curve, and will all meet at the physical
point. (Numerically we shall later see that this seems to be a small effect.)

Finally we mention the connection of this method toχPT. For example for the pseudoscalar
octet, using the results in [5] and assuming their validity up to the point on the flavour symmetric
line, we find

M2
0 = χ

[

1−
16χ
f 2
0

(3L4+L5−6L6−2L8)+
χ

24π2 f 2
0

ln
χ

Λ2
χ

]

α = Q0

[

1−
16χ
f 2
0

(3L4+2L5−6L6−4L8)+
χ

8π2 f 2
0

ln
χ

Λ2
χ

]

β0 = −
Q2

0

6π2 f 2
0

β1 =
Q2

0

f 2
0

[

−32(L5−2L8)+
1

24π2

(

7+4ln
χ

Λ2
χ

)]

β2 =
Q2

0

f 2
0

[

16(L5−2L8)−
1

24π2

(

3+2ln
χ

Λ2
χ

)]

, (2.17)

with Q0 =BR
0ZNS

m , χ = 2Q0(1+αz)m, where theLs are appropriate Low Energy Constants or LECs.
For clover fermions, as mentioned before we have to respect the fact that singlet and non-singlet
quark masses renormalise differently which leads to a non-zeroαZ.

We first note that when expanding theχ-PT about a point on theSU(3) flavour symmetry
line gives to leading order only one parameter –α . (This means, in particular, that flavour singlet
combinations vanish to leading order, as discussed previously.) Secondly, while we fit toα andβ0,
β1 andβ2, it will be difficult to determine the individual LECs. The best we can probably hope for
are these combinations.

3. The Lattice

We use a clover action for 2+1 flavours with a single iterated mild stout smearing as described
in [6]. Also given in this reference is a non-perturbative determination ofthe improvement coeffi-
cient for the clover term, using the Schrödinger Functional method. All the results given here will
be atβ = 5.50,csw= 2.65. HMC and RHMC were used for the 2, 1 fermion flavours respectively,
[7], to generate the gauge configurations. The (bare) quark masses are defined as

amq =
1
2

(

1
κq

−
1

κsym;c

)

, (3.1)

where vanishing of the quark mass along theSU(3) flavour symmetric line determinesκsym;c. We
then keepm= const.≡ m0 which gives

κs =
1

3
κ(0)

sym
−

2
κl

. (3.2)

9
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So once we decide onκl this then determinesκs. A series of runs along theSU(3) flavour line
determines the initial point on this line:κ(0)

symby looking whenXπ/XS, S= N, ∆, ρ are equal to their
physical values, see eqs. (2.9), (2.16). This would also includer if we have previously determined
the physical value ofr0.

In Fig. 6 we plotX2
π/X2

S for variousXS (with S= N, ∆, ρ, r). Also shown are constant

0.00 0.25 0.50 0.75 1.00 1.25
Mπ

2
/Xπ

2

0.05

0.10

0.15

0.20

0.25

0.30

X
π2 /X

S2

S = N
S = ∆
S = ρ
S = r

Figure 6: X2
π/X2

S versusM2
π/X2

π for S= N, ∆, ρ , r for κ(0)
sym= 0.12090. The dashed vertical line represents

the physical value, while the dotted line gives theSU(3) flavour symmetric point. Filled points are on
323×64 lattices while open points are on 243×48 sized lattice. Dashed horizontal lines represent constant
fits to either the 323 × 64 or 243 × 48 results. The physical values are denoted by stars. Forr0 the small
star is the value obtained usingr0 = 0.5fm while the large star usesr0 = 0.467fm (determined fornf = 2
degenerate flavours [8]).

fits to the two volumes — 243× 48 and 323× 64. (The runs on 243× 48 lattices haveO(2000)
trajectories, while the runs on 323×64 lattices haveO(1500) trajectories.) As mentioned before
we first simulate at various quark masses on theSU(3) flavour symmetric line (i.e.m2

π/X2
π = 1 in

Fig. 6 whereκ(0)
sym= 0.12090) to determineκ(0)

sym. Note that simulations with a ‘light’ strange quark
mass and heavy ‘light’ quark mass are possible – here the right most point. (In this inverted strange
world we would expectp→ Σ or ∆ decays.) It is apparent that while some scales fluctuate others
(in particularS=N andr) are very smooth. We take this as a sign that singlet quantities are very flat
and the fluctuations are due to low statistics. Assuming that all ratios are constant, (i.e. higher order
effects are small, see eq. (2.16)) we would expect all the ratios to converge to their experimental
values. This is complicated because there are small finite size effects present (this can again best be
seen in theS= N andr data). To investigate possible effects we are generating results on a variety
of lattices, but for the present for the ratios we simply take the largest volumeavailable. In Fig. 7
we plotaXS/XS, S= N, ∆, ρ, r, π for the largest volume fitted results from Fig. 6 (together with
smaller data sets forκ(0)

sym= 0.12080,κ(0)
sym= 0.12092, the latter data set is presently only partially

generated). This ratio gives estimates for the lattice spacinga for the various scales. There appears
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Figure 7: aXS/XS against 1/κ(0)
sym for S= N, ∆, ρ , r, π andκ(0)

sym= 0.12080, 0.12090, 0.12092. The vertical

dashed line is atκ(0)
sym= 0.12095.

to be convergence to a common scale ofa ∼ 0.078fm. To investigate this point further we are
performing additional runs atκ(0)

sym= 0.12092 and 0.12095.

4. Spectrum results

We now consider the mass spectrum. First we check whether there is a strong hierarchy due
to theSU(3) flavour symmetry as found in eq. (2.10). In Fig. 8 we plot(4M∆ +3mΣ∗ +2MΞ∗ +

MΩ)/X∆, (−2M∆ +MΞ∗ +MΩ)/X∆, (4M∆ −5MΣ∗ −2MΞ∗ +MΩ)/X∆ and(−M∆ +3MΣ∗ −3MΞ∗ +

MΩ)/X∆ againstM2
π/X2

π . Also shown are the experimental values. There is reasonable agreement
with these numbers. (See [9] for a similar investigation of octet baryons.) Itis also seen that as
expected while(−2M∆ +MΞ∗ +MΩ)/X∆ has a linear gradient in the pion mass, in the other fits
any gradient is negligible. To check for possible finite size effects we alsoplot a run at the same
(κl ,κs) but using 243×48 lattice rather than 323×64. There is little difference and so it appears
that considering ratios of quantities within the same multiplet leads to (effective)cancellation of
finite size effects.

In Fig. 9 we plot the nucleon octetMNO/XN (for NO = N, Λ, Σ, Ξ) againstM2
π/X2

π for κsym=

0.12090. A typical ‘fan’ structure is seen with results radiating from the common point on the
symmetric line. Again, finite volume effects tend to cancel in the ratio (normalising with the
singlet quantity from the same octet) and so both volumes have been used in thefit. The combined
fit uses eqs. (2.13), (2.11) with the bare quark mass being an ‘internal’ parameter. Note that one
point has a light strange quark and a heavy ‘light’ quark. Similarly in Figs. 10 and 11 we plot
the corresponding nucleon decupletM∆D/X∆ and vector octetMρO/Xρ againstM2

π/X2
π respectively.
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Figure 8: (4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ)/X∆, (−2M∆ +MΞ∗ +MΩ)/X∆, (4M∆ − 5MΣ∗ − 2MΞ∗ +MΩ)/X∆
and(−M∆ + 3MΣ∗ − 3MΞ∗ +MΩ)/X∆ (filled circles) againstM2

π/X2
π together with a fit of constant, linear

quadratic and cubic term inδml respectively. Extrapolated values are shown as opaque circles. Experimental
values are denoted by stars. The opaque triangle is a run at the same(κl ,κs), but on a 243×48 lattice rather
than a 323×64 lattice.
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Figure 9: MNO/XN (NO = N, Λ, Σ, Ξ)) againstM2
π/X2

π together with the combined fit of eqs. (2.13), (2.11)
(the dashed lines). Experimental values are denoted by stars. The opaque triangle is a run at the same
(κl ,κs), but on a 243×48 lattice rather than a 323×64 lattice.
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Figure 10: M∆D/X∆ (∆D = ∆, Σ∗, Ξ∗, Ω) againstM2
π/X2

π together with the combined fit of eqs. (2.14), (2.11).
Same notation as Fig. 9.
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Figure 11: MρO/Xρ (ρO = ρ , K∗, φs) againstM2
π/X2

π together with the combined fit of eqs. (2.12), (2.11)
(the dashed lines). Same notation as Fig. 9.
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Although we have included quadratic terms in the fit, there is really very little curvature in the
results. We find good agreement with the experimental results.

5. Conclusions

We have outlined a programme to systematically approach the physical point starting from
a point on theSU(3) flavour symmetric line. Exploratory results for the hadron mass spectrum
show that constrained linear extrapolations give accurate results for themass spectrum. We are
also applying this method to the computation of matrix elements, some initial results are given in
[10, 11].
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