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Nf = 2+1+1 flavours of dynamical quarks. The lattice simulations havebeen performed by the

European Twisted Mass collaboration (ETMC) using maximally twisted mass quarks. For the

pseudoscalar decay constants we follow a mixed action approach by using so called Osterwalder-

Seiler fermions in the valence sector for strange and charm quarks. The data for two values of the

lattice spacing and several values of the up/down quark massis analysed using chiral perturbation

theory.
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ensemble β aµℓ aµσ aµδ L/a

B35.32 1.95 0.0035 0.135 0.170 32
B55.32 1.95 0.0055 0.135 0.170 32
B75.32 1.95 0.0075 0.135 0.170 32
B85.24 1.95 0.0085 0.135 0.170 24

D20.48 2.10 0.0020 0.120 0.1385 48
D30.48 2.10 0.0030 0.120 0.1385 48

Table 1: The ensembles used in this investigation. The notation of ref. [6] is used for labeling the ensembles.

1. Introduction

The decay constants of the Pion, Kaon, theD- and theDs-meson are phenomenologically
interesting quantities, not least because the ratiofK/ fπ together with the well known|Vud| can be
used to determine|Vus|. While experimentallyfπ and fK are well known andfD and fDs less so,
lattice QCD is in principle able to provide calculations of all of these from first principles. And
recent advances in the field allow now also for statisticallyprecise determinations withNf = 2 and
Nf = 2+1 dynamical quark flavours [1, 2, 3, 4, 5], with systematic uncertainties more or less under
control.

In this proceeding contribution we are going to present yet another determination of the afore-
mentioned decay constants, however with a dynamical charm quark in place, i.e. for QCD with
Nf = 2+1+1 quark flavours.

2. Set-up

We use gauge configurations as produced by the European Twisted Mass Collaboration (ETMC)
with Nf = 2+1+1 flavours of Wilson twisted mass quarks and Iwasaki gauge action. The set-up
is described in ref. [6] and the ensembles used in this investigation are summarised in table 1. The
twisted mass Dirac operator in the light – i.e. up/down – sector reads [7]

Dℓ = DW +m0+ iµℓγ5τ3 (2.1)

and in the strange/charm sector [8]

Dh = DW +m0+ iµσ γ5τ1+µδ τ3 , (2.2)

whereDW is the Wilson Dirac operator. The value ofm0 was tuned to its critical value as discussed
in refs. [9, 6] in order to realise automaticO(a) improvement at maximal twist [10]. Note that the
bare twisted massesµσ ,δ are related to the bare strange and charm quark masses via therelation

mc,s = µσ ± (ZP/ZS) µδ (2.3)

with pseudoscalar and scalar renormalisation constantsZP andZS.
In the strange and charm quark sector, we use a mixed action approach with Osterwalder-Seiler

(OS) valence quarks by formally introducing a twisted doublet for valence strange and charm quark
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β = 1.95 β = 2.10

aµs 0.0130 0.0110
0.0145 0.0120
0.0160 0.0130
0.0180 0.0150
0.0210 0.0180

0.0200

Table 2: Bare values of the valence quark masses in the strange regionfor β = 1.95 andβ = 2.10.

flavours [11, 12], a set-up without flavour mixing artifacts in the valence sector. The two actions
in the sea and the valence sector can be matched by tuning the bare values of valence strange and
charm such that unitary Kaon and D-meson masses are reproduced. Unfortunately, it turned out
that the unitary Kaon and D-meson masses were not exactly tuned to their physical values and
currently we are still lacking ensembles which would allow to interpolate to the corresponding
physical values. Hence, for the time being we vary the valence quark masses to interpolate the
valence Kaon and D-meson masses to their physical values, asdiscussed below. This approach has
been successfully applied to the ETMCNf = 2 flavour gauge configurations in ref. [4].

The determination of the (unitary) K-meson mass is described in ref. [13]. Its decay constant
can be determined from

fK = (mℓ+ms)
〈0|P̃K |K〉

m2
K

, (2.4)

where P̃K represents the projection to the physical Kaon interpolating operator as discussed in
ref [13]. ms is the strange quark masses defined in eq. (2.3). The pseudoscalar decay constantfPS

in the valence sector is determined from

fPS=
(

µ(1)
val +µ(2)

val

) |〈0|P|PS〉|
mPSsinhmPS

, (2.5)

whereP= q̄1γ5q2 with quark fieldsq1,q2 suitably chosen for the desired quark content. The meson
massmPS and the matrix element|〈0|P|PS〉| entering eq. (2.5) have been extracted from a single
state fit of the corresponding two-point pseudoscalar correlation function. The replacement ofmPS

with sinhmPS in the lattice definition (2.5) of the decay constant helps inreducing discretisation
errors for heavy meson masses [4].

Any value for fPSandmPSdepends on the mass-value of the light dynamical quark (sea strange
and charm quark mass values are fixed for a givenβ -value) and two valence quark masses, which
we denote byfPS(µsea

ℓ ,µval
1 ,µval

2 ). We have investigated several values for the valence quarks:
µval = µsea

ℓ = µℓ and five to six values in the strange and charm quark regionµval = µs,c. The
ensembles used are summarised in table 1 and the bare values of the valence strange and charm
quark masses in tables 2 and 3.

3. Results

One may expect large differences in between the unitary set-up and the mixed action set-up at
finite values of the lattice spacing. In order to investigatethis point we have determinedfK in the
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β = 1.95 β = 2.10

aµc 0.200 0.1650
0.215 0.1800
0.240 0.2000
0.260 0.2250

0.2500

Table 3: Bare values of the valence quark masses in the charm region for β = 1.95 andβ = 2.10.

unitary and the mixed action set-up after matching the Kaon mass. The result is shown in figure 1
where we plotfK as a function of the squared pion mass. Both quantities are inunits of f0, the pion
decay constant in the chiral limit as determined in ref. [6].Within errors unitary and mixed set-up
determination offK agree. Moreover, results for the two available values of thelattice spacing
agree within errors. This indicates small lattice and smallunitarity breaking artifacts at least in
fK . Note that the ratioZP/ZS used for the determination of the unitaryfK has been determined by
matching the bare value of the OS strange quark mass toµσ andµδ via eq. (2.3).

In order to determine the physical value offK we fit SU(2) χPT formulae to our pion and
Kaon decay constants data [14, 3] simultaneously accordingto

fPS(µℓ,µℓ,µℓ) = f0 · (1−2ξll lnξll +bξll ) , (3.1)

fPS(µℓ,µℓ,µs) = ( f (K)
0 + f (K)

m ξss) ·

·
[

1− 3
4

ξll lnξll +(b(K)
0 +b(K)

m ξss)ξll

]

(3.2)

where

ξXY =
m2

PS(µℓ,µX ,µY)

(4π f0)2 (3.3)

are expressed in our analysis as a function of meson masses1. We correct our data for finite size
effects using NLOχPT [15, 16]

fPS(µℓ,µℓ,µℓ;L) = fPS(µℓ,µℓ,µℓ) · [1−2ξll g̃1(L,ξll )] ,

fPS(µℓ,µℓ,µs;L) = fPS(µℓ,µℓ,µs) ·
[

1− 3
4

ξll g̃1(L,ξll )

]

.
(3.4)

We fit to ourβ = 1.95 andβ = 2.10 data simultaneously. We do not include lattice artifactsof
O(a2) in our fit, because the amount of data is not sufficient to do so:including these effects lets
the fits become instable. Moreover, the data is fittable without these terms withχ2/dof= 50/30.

The physical input to our fits isfπ = 130.7 MeV, mπ = 135 MeV andmK = 497.7 MeV. In
figure 2 we show pion and Kaon decay constants as a function of the squared pion massm2

π . The
corresponding Kaon decay constant is determined at a value of m2

PS(µℓ,µs,µs) = 2m2
K −m2

π . For
the figure we have interpolated our data linearly to these values. As a result we obtainfK/ fπ =

1.224(13), fK = 160(2) MeV and ℓ̄4 = 4.78(2) with statistical errors only as determined from a
bootstrap analysis.

1We use the normalization in whichfπ = 130.7MeV.
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OS β = 2.10
OS β = 1.95

unitary β = 2.10
unitary β = 1.95

m2
π
/f2

0

f K
/
f 0

1816141210864
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1.56

1.54

1.52

1.5

1.48

1.46

1.44
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Figure 1: fK/ f0 as a function of the pion mass squared. Results for the unitary and the mixed actionfK are
shown for two values of the lattice spacing.

The fit also allows us to determine the values of the lattice spacings atβ = 1.95 andβ = 2.10
and the value off0. All these quantities agree very well with the results obtained in ref. [6].

Following the procedure described in ref. [4] we have also analysed the data forfD and fDs

using SU(2) heavy meson chiral perturbation theory [17]. We consider here the expansions of

fDs

√
mDs and

fDs

√
mDs

fD
√

mD
(3.5)

including terms proportionala2m2
Ds

and 1/mDs. For details we refer to ref. [4]. Our first results for
fD and fDs are very encouraging, however, quoting results requires a better control of the system-
atics involved in this investigation.

4. Summary and Outlook

We have presented the first determination of the pseudoscalar decay constantsfK , fD and fDs

from lattice QCD with dynamical up, down, strange and charm quark flavours. We have used a
mixed action approach with Osterwalder-Seiler valence quarks on a maximally twisted mass sea.
The analysis indicates small lattice and unitarity breaking artifacts. The preliminary results are
fK/ fπ = 1.224(13) and fK = 160(2) MeV obtained with a SU(2) chiral perturbation theory fit.
The errors are statistical only. Using the results of ref. [18] this translates to|Vus|= 0.220(2).
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Figure 2: Pion and Kaon decay constants as a function ofm2
π . We show data for two values of the lattice

spacinga= 0.079 fm anda= 0.060 fm, corresponding toβ = 1.95 andβ = 2.10.

A comparison of our results forfK and fK/ fπ to results available in the literature shows that
to the current level of accuracy there is no difference visible, neither toNf = 2 flavour results [4]
nor toNf = 2+1 flavour results [3, 2, 1].

A similar analysis has been performed forfD and fDs. In the case of these charmed quantities it
will be in particular interesting to understand whether lattice artifacts proportional toa2m2

c are small
enough in our lattice set-up to allow for a precise determination of the corresponding quantities.
However, theNf = 2 results presented in ref. [4] give rise to optimism that also fD and fDs can be
reliably determined in our set-up.

Clearly the results presented here need a better understanding of the systematic uncertainties.
This includes in particular the dependence of the decay constants on the sea strange and charm
quark mass values. ETMC is currently producing ensembles toinvestigate this point. These new
ensembles should eventually allow to interpolate to the physical values ofmK andmD. Moreover,
more ensembles with different light quark mass values are required forβ = 2.10 to better control
lattice artifacts, for which also a third value of the lattice spacing is desirable.

On the analysis site we are currently implementing different fit formulae (see for instance
refs. [5, 19]) in order to better understand the extrapolation in the various quark masses.
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