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We investigate potentials between pairs of static-light mesons in Ny = 2 Lattice QCD, in different
spin channels. The question of attraction and repulsion is particularly interesting with respect to
the X(3872) charmonium state and charged candidates such as the Z*(4430). We employ the
nonperturbatively improved Sheikholeslami-Wohlert fermion and the Wilson gauge actions at a
lattice spacing a =~ 0.084 fm and a pseudoscalar mass mpg ~= 760 MeV. We use stochastic all-to-all
propagator techniques, improved by a hopping parameter expansion. The analysis is based on the

variational method, utilizing various source and sink interpolators.
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1. Introduction

We numerically determine ground and excited states of static-light mesons (% = Qg) as well as
intermeson potentials between pairs of static-light mesons, %(r)%(0) and %(r)%(0), with a static
quark-quark (or quark-antiquark) separation r = |r| = Ra. a denotes the lattice spacing, Q a static
colour source and the positions of the light quarks g are not fixed. For large heavy quark masses the
spectra of heavy-light mesons are determined by excitations of the light quark and gluonic degrees
of freedom. In particular, the vector-pseudoscalar splitting vanishes and the static-light meson %
can be interpreted as either a B, a B', a D or a D* heavy-light meson.

Static-light intermeson potentials were first evaluated on the lattice by Michael and Pennanen
in the quenched approximation [1] and with Ny = 2 Sheikholeslami-Wohlert sea quarks [2]. A more
detailed quenched study can be found in ref. [3] and the un-quenched case is revisited with twisted
mass fermions by Wagner in these proceedings [4]. Meson-antimeson potentials were computed

in ref. [2] and, with Wilson sea quarks, in ref. [5]. Graphically, the quark line diagrams that we

evaluate can be depicted as,
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where the static-light correlation function is shown on the left, and those for the meson-meson
and meson-antimeson cases in the centre and on the right, respectively. Straight lines represent
static quark propagators and wiggly lines light quark propagators. In this paper we neglect explicit
meson exchange (i.e. “box” and “cross”) diagrams. The analyses of these as well as of a larger
lattice volume are in progress. This means that here we only consider the isospin / = 0 &% and
the I = 1 %% combinations.

The static-light correlation function in Euclidean time ¢ = Ta is given by,
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C(t) = (0/(Qa Tup ap).sr (@y Oys Q5)x10) = < Tr

The trace is over colour (not displayed) and Dirac indices, (-),, indicates the expectation value
over gauge configurations and [l denotes a unit vector in p-direction. We average over all possible
source points x/a € {1,...,Ls}> x {1,...,L;} to reduce statistical errors where x = (x,x4). The
correlator is automatically zero-momentum projected since X is the same at source and sink, due
to the static propagator. M};l = (gyqx) is the propagator for the light quark g on a given gauge
configuration and U, , is the gauge link connecting the lattice site x with x4+ afl. The absence
of the spin in the static propagator necessitates the (1 + 74)/2 Dirac projection of the (fermionic)
static-light “meson” to fix the parity P. This is very similar to baryonic correlation functions where
a spin % source is created by three (rather than one) light quarks. Meson-(anti)meson correlation
functions can be obtained by combining the above correlator with another one that is spatially

shifted by a distance r, before taking the gauge average.
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2. Representations and classification of states

In the continuum limit, the static-light states can be classified according to fermionic repre-
sentations J” of the rotation group O(3). At vanishing distance r = 0 the .2 and %% states can
be characterized by integer J© and J©C quantum numbers, respectively. However at r = |r| > 0
the O(3) (or O(3) ® ¥) symmetry is broken down to its cylindrical D., subgroup. The irreducible
representations of this are conventionally labelled by the spin along the axis A, where ¥, I1, A refer
to A =0, 1,2, respectively, with a subscript 1 = g for gerade (even) PC = + or 1] = u for ungerade
(odd) PC = — transformation properties with respect to the midpoint. All A > 1 representations are
two-dimensional. The one-dimensional ¥ representations carry an additional 6, = =+ superscript
for their reflection symmetry with respect to a plane that includes the two endpoints.

©)

To create states of different J”(©) we use operators ¢ that contain combinations of Dirac -

matrices and covariant lattice derivatives V[U] that act on a fermion spinor ¢ as,
¥

Vuqe =Uxpqyrap —Ux,—pGx—ap, Wwhere Uy ;= Uy—aﬂ,u . 2.1
On the lattice the continuum rotational symmetry is broken and the groups O(3) and D.., need to
be replaced by their finite dimensional subgroups Oy and Dy, respectively. We label fermionic
representations of the octahedral group Oy, as Oy’. For fermionic representations of D..;, that we do
not need in the present context, see ref. [6]. It is well known, see e.g. ref. [7], that the assignment
of a continuum spin to a lattice result can be ambiguous, in particular for radial excitations because
a given Oy, representation can be subduced from several continuum Js. For instance,

17
T H<—J:§,§,...,
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For A < 2 the mapping of continuum D.., onto discrete Dy, representations is more straight for-

Gy —J= Al —J=04,.., Ti—J=134,.... (22

ward. Hence in this case we adopt the continuum notation only.
The operators that we used to create the static-light mesons are displayed in table 1 (see, e.g.,
ref. [8]). The intermeson potentials were obtained by combining two static-light mesons of differ-

1% wave [8] | Oy rep. | continuum JP | JP (heavy-light)
¥ S Gi N 0,1~
1 P_ G, '3 0t,1"
YiVi P_ G, ' 0t 1"
(nVi—1nVa)+cycl Py H- 3 127

Table 1: Operators and representations for static-light mesons. In the last column we display the J* for a
heavy-light meson, obtained by substituting the (spinless) static source by a heavy fermion.

ent (or the same) quantum numbers. This can be projected into an irreducible D, representation,
either by coupling the light quarks together in spinor space [4] or by projecting the static-light
meson spins into the direction £ of the static source distance, by applying %(]l +iysy- 1), and
taking appropriate symmetric (A; = 1) or antisymmetric (A; = 0) spin combinations. These two
approaches can be related to each other via a Fierz transformation. For the preliminary results pre-
sented here we have not yet performed this projection and different representations will mix. The
analyzed operators and the corresponding representations are listed in table 2.
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Table 2: Operators and continuum representations for the meson-meson (%.%) and meson-antimeson (%.%)
potentials.

For J > 0 and r > 0 the irreducible representations of O(3) split up into two or more irreducible
representations of D..,. For instance the angular momentum of the P, operator within our 17,2~
r = 0 state can be perpendicular or parallel to the intermeson axis. For the axis pointing into the 3-
direction, we call the S® P, operator ¥5 ® (71 V1 — 1 V2) “parallel” (||) and the other combinations
“perpendicular” (_L). The L state has no angular momentum pointing into the direction of the axis
and hence only couples with the light quarks to £ and IT,. Vice versa, the | operator can only
create IT, and A, states but not the £/

3. Simulation and analysis

La/fm
1.34

nps /MGV]
760(3)

N, conf
200

volume L2 x L; | BB
163 x 32 5.29

a/fm
0.084

Kval = Ksea
0.13550

csw
1.9192

Table 3: Lattice parameters.

We employ N¢ = 2 Sheikholeslami-Wohlert configurations generated by the QCDSF Collab-
oration [9]. The parameter values are listed in table 3, where the scale is set using ro(B,x) =
0.467 fm. The pseudoscalar mass corresponds to its infinite volume value. We use the Chroma
software system [10].

To achieve high statistics in the evaluation of the diagrams eq. (1.1), all-to-all propagators
need to be computed. This is done using stochastic estimator techniques, see ref. [11] and ref-
erences therein. We generate 300 complex Z, noise sources and apply the hopping parameter
expansion to reduce the stochastic variance [12, 5, 11]. Furthermore we enhance the signal over
noise ratio by employing a static action with reduced self-energy [5]. This is done by applying
one stout smearing step [13] with the parameter p = 1/6 to the temporal links, used to calculate
the static propagators. Wuppertal smearing [14] is applied to the source and sink operators, where
we employ spatially smeared parallel transporters [5] with the parameters nye, = 15, oc = 2.5. The
Wauppertal smearing hopping parameter value &y, = 0.3 is combined with three iteration numbers
Nier € {16,50,100}. Masses are then extracted from the resulting correlation matrices, by means
of the variational method [15], solving a generalized eigenvalue problem. Errors are calculated
using the jackknife method.
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4. Results

The eigenvalues A% (z,1) of the generalized eigenvalue problem [15],
k
G0yt = AW (1,10)Cy (o)t
are fitted to one- and two-exponential ansitze, to obtain the kth mass. The appropriate values of 7
and the fit ranges in ¢ are determined from monitoring the effective masses,

y - )’(k) t,1o

On the left hand side of figure 1, we display the effective ground state energy levels Eeg for ty) = 2a
of the y5 ® y5 % system for different distances R = r/a. In the limit r — oo these will approach
the sum of two {r static-light meson effective masses (dotted curve). At short distances we see
attraction in this channel. The quality of the effective mass plateaus deteriorates with decreasing
distance since the wavefunction of such interacting states becomes more than the mere product
of our two static-light meson interpolators. We should also keep in mind that so far we did not
perform the singlet spin projection and hence there will be additional pollution from the I, state,
see table 2. For the example displayed, we perform two-exponential fits to the ¢t/a € {4,...,10}
data to obtain the masses.
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Figure 1: Effective groundstate masses of the 5 ® ¥5 operator at different distances (left hand side). The
dotted line corresponds to twice this mass for a single %Jr static-light meson. The intermeson potential V (r)
for the combinations % ® 15 (Z§,Z{") and 35 @ 1 () (right hand side).

We define intermeson potentials as the difference between the meson-meson energy levels and
the r — oo two static-light meson limiting cases:

Va,2,(r) = Ez, 2, (r) — (mz, + mz,) — 0. 4.1)

The results for the groundstate (Z;) and the first excited state (Z;’ ) of the 5 ® 5 operator and the

Y., groundstate of ¥5s ® 1 are plotted on the right hand side of figure 1. In all these / = O channels
there is attraction of the order of 50 MeV at a distance of 0.2 fm.

In figure 2 we display the ground state and first excited state energy levels for the 4% meson-

antimeson case in the 5 ® ¥5 channel. The two horizontal lines correspond to twice the ground state
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Figure 2: Effective masses for the 15 ® 75 .2 ground and first excited states (red symbols). The horizontal
lines denote sums of two static-light meson masses while the black curve and symbols are the static QQ
potential, offset by the scalar ap meson mass.

mass of the %Jr static-light meson and to the sum of its ground and its first excited state masses,
the expected r — oo limits. At first sight there appear to be very substantial short distance attractive
forces in this channel. However, states consisting of a QQ static potential and a scalar I = 1 particle
will have the same quantum numbers. For our lattice parameters the ay meson is the lowest such
state, with masses of two pseudoscalars as well as of a P-wave vector lying higher. We include the
sum of these two masses in the figure. The ground state %% energy still lies below this level but
to decide whether we effectively see the sum of ag and the static potential and to disentangle which
I=1 Z; energy level is the lowest one, interactions of the ay with the static potential will have to
be taken into account. We hope that simulations on a larger volume will help to clarify this.

5. Conclusions

We investigated interactions between pairs of static-light mesons and found attraction in the
I =8 = 0 sector. Meson-antimeson potentials are also very interesting with respect to charmonium
threshold states [16] (DD molecules or tetraquarks) but difficult to disentangle from mesons that are
bound to static-static states (hadro-quarkonium [17]). We are in the process to extend our study to
I=1%% and to I =0 B2 states and to disentangle S; = +1 from S; = O states. Also simulations
on a larger volume are in progress.
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